Pelotomaculum terephthalicum sp. nov. and Pelotomaculum isophthalicum sp. nov : two anaerobic bacteria that degrade phthalate isomers in syntrophic association with hydrogenotrophic methanogens

An anaerobic phthalate isomer-degrading strain (JT(T)) that we previously isolated was characterized. In addition, a strictly anaerobic, mesophilic, syntrophic phthalate isomer-degrading bacterium, designated strain JI(T), was isolated and characterized in this study. Both were non-motile rods that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of microbiology 2006-04, Vol.185 (3), p.172-182
Hauptverfasser: QIU, Yan-Ling, SEKIGUCHI, Yuji, HANADA, Satoshi, IMACHI, Hiroyuki, TSENG, I.-Cheng, CHENG, Sheng-Shung, OHASHI, Akiyoshi, HARADA, Hideki, KAMAGATA, Yoichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An anaerobic phthalate isomer-degrading strain (JT(T)) that we previously isolated was characterized. In addition, a strictly anaerobic, mesophilic, syntrophic phthalate isomer-degrading bacterium, designated strain JI(T), was isolated and characterized in this study. Both were non-motile rods that formed spores. In both strains, the optimal growth was observed at temperatures around 37 degrees C and neutral pH. In syntrophic co-culture with the hydrogenotrophic methanogen Methanospirillum hungatei, both strains could utilize two or three phthalate isomers for growth, and produce acetate and methane as end products. Strain JT(T) was able to grow on isophthalate, terephthalate, and a number of low-molecular weight aromatic compounds, such as benzoate, hydroquinone, 2-hydroxybenzoate, 3-hydroxybenzoate, 2,5-dihydroxybenzoate, 3-phenylpropionate in co-culture with M. hungatei. It could also grow on crotonate, hydroquinone and 2,5-dihydroxybenzoate in pure culture. Strain JI(T) utilized all of the three phthalate isomers as well as benzoate and 3-hydroxybenzoate for growth in co-culture with M. hungatei. No substrates were, however, found to support the axenic growth of strain JI(T). Neither strain JT(T) nor strain JI(T) could utilize sulfate, sulfite, thiosulfate, nitrate, fumarate, Fe (III) or 4-hydroxybenzoate as electron acceptor. Phylogenetically, strains JT(T) and JI(T) were relatively close to the members of the genera Pelotomaculum and Cryptanaerobacter in 'Desulfotomaculum lineage I'. Physiological and chemotaxonomic characteristics indicated that the two isolates should be classified into the genus Pelotomaculum, creating two novel species for them. Here, we propose Pelotomaculum terephthalicum sp. nov. and Pelotomaculum isophthalicum sp. nov. for strain JT(T) and strain JI(T), respectively. The type strains are strains JT(T) (= DSM 16121(T )= JCM 11824(T )= NBRC 100523(T)) and JI(T) (= JCM 12282(T) = BAA-1053(T)) for P. terephthalicum and P. isophthalicum, respectively.
ISSN:0302-8933
1432-072X
DOI:10.1007/s00203-005-0081-5