Dissecting the sequence specific functions of alternative N-terminal isoforms of mouse bullous pemphigoid antigen 1

Bullous pemphigoid antigen 1 (BPAG1) is a member of the plakin family of proteins that is involved in cross-linking the cytoskeletal elements and attaching them to cell junctions. BPAG1 null mice develop severe degeneration of sensory neurons that was attributed in part due to the absence of a splic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental cell research 2006-09, Vol.312 (15), p.2712-2725
Hauptverfasser: Jefferson, Julius J., Leung, Conrad L., Liem, Ronald K.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bullous pemphigoid antigen 1 (BPAG1) is a member of the plakin family of proteins that is involved in cross-linking the cytoskeletal elements and attaching them to cell junctions. BPAG1 null mice develop severe degeneration of sensory neurons that was attributed in part due to the absence of a splice variant called BPAG1a that harbors an actin-binding domain at the N-terminus. Additional alternative splicing also results in BPAG1a isoforms with different first exons, leading to three additional types of BPAG1a called isoforms 1, 2 and 3 (or BPAG1a1, BPAG1a2, and BPAG1a3). These unique N-terminal extensions of the BPAG1a isoforms are of variable length. In this study, we characterized these N-terminal isoforms and evaluated the influence of these unique N-terminal sequences to the actin-binding properties. The unique N-terminal region of isoform 1 is very short and was not expected to affect the property of the ABD that followed it. In contrast, transfection studies and mutagenesis analyses signified that the N-terminal sequences of isoform 2 had the ability to bundle actin filaments and the N-terminal region that contained isoform 3 showed cortical localization. Isoforms 1, 2 and 3 also displayed differential tissue expression profiles. Taken together, these data suggested that the unique N-terminal regions of these isoforms have different roles that may be tailored to meet tissue specific functions.
ISSN:0014-4827
1090-2422
DOI:10.1016/j.yexcr.2006.04.025