EphA7 receptor is expressed differentially at chicken prosomeric boundaries

We reexamined tyrosine-kinase receptor EphA7 RNA signal in embryonic chicken forebrain, to clarify its topographic relationships with early regionalization processes, such as establishment of prosomeric boundaries. After neurulation, uniform alar expression appears across prospective prosomeres pros...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience 2006-01, Vol.141 (4), p.1887-1897
Hauptverfasser: García-Calero, E., de Puelles, E., Puelles, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We reexamined tyrosine-kinase receptor EphA7 RNA signal in embryonic chicken forebrain, to clarify its topographic relationships with early regionalization processes, such as establishment of prosomeric boundaries. After neurulation, uniform alar expression appears across prospective prosomeres prosomere 1, prosomere 2 and prosomere 3 (prethalamus, thalamus and pretectum). This pattern soon changes by differential downregulation at or in between some of the prosomeric boundaries in an individual pattern for each limit, and by expansion of expression into the rostral midbrain. The secondary distribution highlights various transversal and longitudinal domains, notably the zona limitans intrathalamica and the pretectum limits, as well as two longitudinal bands in the basal plate, termed paramedian and parabasal. Strong expression of EphA7 appears at the mammillary pouch and a supramammillary tegmental arch from stage Hamburger and Hamilton stages 14–15 onwards. At the end of the developmental period examined, expression of EphA7 in the ventricular zone decreases generally (with some exceptions) and novel expression domains start to appear in the mantle layer, initiating a third phase of differential expression. Thus, while the expression of EphA7 does not show a fixed functional or topographic relationship to prosomeric boundaries, sequential transcription changes during chicken development are consistent with a differential involvement of the diverse interprosomeric boundaries, as well as dorsoventral patterning organizers, in the regulation of EphA7 expression.
ISSN:0306-4522
1873-7544
DOI:10.1016/j.neuroscience.2006.04.074