Development of the California Current during the past 12,000 yr based on diatoms and silicoflagellates

Detailed diatom and silicoflagellates records in three cores from the offshore region of southern Oregon to central California reveal the evolution of the northern part of the California Current during the past 12,000 yr. The early Holocene, prior to ∼ 9 ka, was characterized by relatively warm sea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Palaeogeography, palaeoclimatology, palaeoecology palaeoclimatology, palaeoecology, 2007-05, Vol.248 (3), p.313-338
Hauptverfasser: Barron, John A., Bukry, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Detailed diatom and silicoflagellates records in three cores from the offshore region of southern Oregon to central California reveal the evolution of the northern part of the California Current during the past 12,000 yr. The early Holocene, prior to ∼ 9 ka, was characterized by relatively warm sea surface temperatures (SST), owing to enhanced northerly flow of the subtropical waters comparable to the modern Davidson Current. Progressive strengthening of the North Pacific High lead to intensification of the southward flow of the California Current at ∼ 8 ka, resulting in increased coastal upwelling and relatively cooler SST which persisted until ∼ 5 ka. Reduced southward flow of the California Current between ∼ 4.8 ka and 3.6 ka may have been responsible for a period of decreased upwelling. Modern seasonal oceanographic cycles, as evidenced by increased spring–early summer coastal upwelling and warming of early fall SST evolved between 3.5 and 3.2 ka. Widespread occurrence of paleoceanographic and paleoclimatic change between ∼ 3.5–3.0 ka along the eastern margins of the North Pacific was likely a response to increasing ENSO variability in the tropical Pacific.
ISSN:0031-0182
1872-616X
DOI:10.1016/j.palaeo.2006.12.009