A highly active nickel electrocatalyst shows excellent selectivity for CO2 reduction in acidic media
The development of selective electrocatalysts for CO2 reduction in water offers a sustainable route to carbon based fuels and feedstocks. However, molecular catalysts are typically studied in non-aqueous solvents, in part to avoid competitive H2 evolution. [Ni(cyclam)]2+ (1) is one of the few known...
Gespeichert in:
Veröffentlicht in: | Chemical science (Cambridge) 2016-01, Vol.7 (2), p.1521-1526 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The development of selective electrocatalysts for CO2 reduction in water offers a sustainable route to carbon based fuels and feedstocks. However, molecular catalysts are typically studied in non-aqueous solvents, in part to avoid competitive H2 evolution. [Ni(cyclam)]2+ (1) is one of the few known electrocatalysts that operate in water and 30 years after its report its activity remains a rarely surpassed benchmark. Here we report that [Ni(cyclam-CO2H)]2+ (cyclam-CO2H = 1,4,8,11-tetraazacyclotetradecane-6-carboxylic acid (2)) shows greatly enhanced activity versus1 for CO production. At pHs < pKa of the pendant carboxylic acid a large increase in catalytic activity occurs. Remarkably, despite the high proton concentration (pH 2), 2 maintains selectivity for CO2 reduction and is believed to be unique in operating selectively in such acidic aqueous solutions. |
---|---|
ISSN: | 2041-6520 2041-6539 |
DOI: | 10.1039/c5sc03225c |