Effects of urbanization on California’s fish diversity: Differentiation, homogenization and the influence of spatial scale

Human development of freshwater ecosystems has lead to drastic changes in freshwater fish faunas, including the loss of many native species and the gain of non-natives. Typically conservation ecologists view these two opposing forces as contributing to biological homogenization, and consider homogen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological conservation 2006, Vol.127 (3), p.310-318
Hauptverfasser: Marchetti, Michael P., Lockwood, Julie L., Light, Theo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human development of freshwater ecosystems has lead to drastic changes in freshwater fish faunas, including the loss of many native species and the gain of non-natives. Typically conservation ecologists view these two opposing forces as contributing to biological homogenization, and consider homogenization as one of the principle negative consequences of urbanization. However, homogenization is only one outcome out of many that can result from the loss and gain of species. In particular, it is possible for invasions and extinctions to lead to differentiation; a process whereby two (or more) regions become less similar to one another through time. Using the freshwater fishes of California, we show that urbanization is highly positively correlated to both the endangerment of native fish and the invasion of non-native fish within watersheds. Despite this, the fish faunas of California’s watersheds have differentiated from one another through time. Furthermore, the degree of differentiation is positively correlated with measures of urbanization, which is contrary to expectation. We suggest that this result reflects: (1) the haphazard manner in which non-native fishes have been introduced into California watersheds, (2) the difficulty that both native and non-native fishes have in expanding their geographical ranges, and (3) the continued presence of vestiges of formerly distinct regional faunas. This pattern of differentiation among watersheds is likely a matter of scale, as previous work on freshwater fishes has demonstrated homogenization at both larger and smaller spatial scales. In addition the observed pattern is probably a short-term (temporal) phenomena and will disappear with continued invasion and extinction. We suggest that similar patterns may occur for other taxa that have limited natural dispersal abilities and that are idiosyncratically released as non-natives via human activities (e.g. herptiles).
ISSN:0006-3207
1873-2917
DOI:10.1016/j.biocon.2005.04.025