Effect and proposed mechanism of vitamin C modulating amino acid regulation of autophagic proteolysis

Autophagy is an intracellular bulk degradation process, induced under nutrient starvation. Failure of autophagy has been recognized as a contributor to aging and multiple age related neurodegenerative diseases. Improving autophagy is a beneficial anti-aging strategy, however very few physiological r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimie 2017-11, Vol.142, p.51-62
Hauptverfasser: Karim, Md. Razaul, Kadowaki, Motoni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Autophagy is an intracellular bulk degradation process, induced under nutrient starvation. Failure of autophagy has been recognized as a contributor to aging and multiple age related neurodegenerative diseases. Improving autophagy is a beneficial anti-aging strategy, however very few physiological regulators have been identified. Here, we demonstrate that vitamin C is a nutritional stimulator of autophagy. Supplementation of fresh hepatocytes with vitamin C increased autophagic proteolysis significantly in the presence of amino acids in a dose- and time-dependent manner, although no effect was observed in the absence of amino acids. In addition, inhibitor studies with 3-methyladenine, chloroquine, leupeptin and β-lactone confirmed that vitamin C is active through the lysosomal autophagy and not the proteasome pathway. Furthermore, the autophagy marker LC3 protein was significantly increased by vitamin C, suggesting its possible site of action is at the formation step. Both the reduced (ascorbic acid, AsA) and oxidized form (dehydroascorbic acid, DHA) of vitamin C exhibited equal enhancing effect, indicating that the effect does not depend on the anti-oxidation functionality of vitamin C. To understand the mechanism, we established that the effective dose (50 μM) was 15× lower than the intracellular content suggesting these would be only a minor influx from the extracellular pool. Moreover, transporter inhibitor studies in an AsA deficient ODS model rat revealed more accurately that the enhancing effect on autophagic proteolysis still existed, even though the intracellular influx of AsA was blocked. Taken together, these results provide evidence that vitamin C can potentially act through extracellular signaling. •Vitamin C increased autophagy by attenuating amino acid's suppressive effect.•Both the reduced and oxidized form of vitamin C showed equal autophagy stimulation.•Vitamin C might contributes through both intracellular and potentially an extracellular signaling.
ISSN:0300-9084
1638-6183
DOI:10.1016/j.biochi.2017.08.004