Highly Nitrogen-Doped Three-Dimensional Carbon Fibers Network with Superior Sodium Storage Capacity
Inspired by the excellent absorption capability of spongelike bacterial cellulose (BC), three-dimensional hierarchical porous carbon fibers doped with an ultrahigh content of N (21.2 atom %) (i.e., nitrogen-doped carbon fibers, NDCFs) were synthesized by an adsorption–swelling strategy using BC as t...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2017-08, Vol.9 (34), p.28604-28611 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Inspired by the excellent absorption capability of spongelike bacterial cellulose (BC), three-dimensional hierarchical porous carbon fibers doped with an ultrahigh content of N (21.2 atom %) (i.e., nitrogen-doped carbon fibers, NDCFs) were synthesized by an adsorption–swelling strategy using BC as the carbonaceous material. When used as anode materials for sodium-ion batteries, the NDCFs deliver a high reversible capacity of 86.2 mAh g–1 even after 2000 cycles at a high current density of 10.0 A g–1. It is proposed that the excellent Na+ storage performance is mainly due to the defective surface of the NDCFs created by the high content of N dopant. Density functional theory (DFT) calculations show that the defect sites created by N doping can strongly “host” Na+ and therefore contribute to the enhanced storage capacity. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.7b08704 |