Study on non-linear equilibrium, kinetics and thermodynamic of deltamethrin removal in aqueous solution using modified magnetic iron oxide nanoparticles

The purpose of modification of magnetic iron oxide nanoparticles is an eco-friendly, emerging and economical method for removing deltamethrin in the aqueous solution and wastewater effluents when compared with other adsorbent methods. Modified magnetic iron oxide nanoparticles were synthesized by co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water science and technology 2017-08, Vol.76 (3-4), p.847-858
Hauptverfasser: Ghafari, Bahareh, Moniri, Elham, Panahi, Homayon Ahmad, Karbassi, Abdolreza, Najafpour, Shaban
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of modification of magnetic iron oxide nanoparticles is an eco-friendly, emerging and economical method for removing deltamethrin in the aqueous solution and wastewater effluents when compared with other adsorbent methods. Modified magnetic iron oxide nanoparticles were synthesized by co-precipitation and then coupled with 3-hydroxytyraminium chloride. The nano-sorbent was characterized by thermogravimetric analysis, elemental analysis, transmission electron microscopy, scanning electron microscope, Fourier transform infrared spectroscopy, zero point charge and surface area determination. Batch studies were conducted and adsorption equilibrium, kinetic and thermodynamic non-linear models were carried out. The resulting equilibrium data were tested with Langmuir and Freundlich non-linear isotherm models, and the results showed that the Langmuir isotherm fitted the data well. Kinetic studies were done with different initial deltamethrin concentrations, adsorbent dosage and temperature, and the data were assimilated with pseudo-first order, pseudo-second order and intra-particle diffusion kinetic equations, and it was found that the studied nano-sorbent processes followed the pseudo-second order kinetic equation. Thermodynamic analysis was also carried out to estimate the changes in free energy (ΔG ), enthalpy (ΔH ), and entropy (ΔS ). The thermodynamic parameters revealed that the adsorption of deltamethrin into the nano-sorbent was spontaneous, feasible and showed an endothermic process.
ISSN:0273-1223
1996-9732
DOI:10.2166/wst.2017.251