Response of the North Atlantic Thermohaline Circulation and Ventilation to Increasing Carbon Dioxide in CCSM3
The response of the North Atlantic thermohaline circulation to idealized climate forcing of 1% per year compound increase in CO₂ is examined in three configurations of the Community Climate System Model version 3 that differ in their component model resolutions. The strength of the Atlantic overturn...
Gespeichert in:
Veröffentlicht in: | Journal of climate 2006-06, Vol.19 (11), p.2382-2397 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The response of the North Atlantic thermohaline circulation to idealized climate forcing of 1% per year compound increase in CO₂ is examined in three configurations of the Community Climate System Model version 3 that differ in their component model resolutions. The strength of the Atlantic overturning circulation declines at a rate of 22%–26% of the corresponding control experiment maximum overturning per century in response to the increase in CO₂. The mean meridional overturning and its variability on decadal time scales in the control experiments, the rate of decrease in the transient forcing experiments, and the rate of recovery in periods of CO₂ stabilization all increase with increasing component model resolution. By examining the changes in ocean surface forcing with increasing CO₂ in the framework of the water-mass transformation function, we show that the decline in the overturning is driven by decreasing density of the subpolar North Atlantic due to increasing surface heat fluxes. While there is an intensification of the hydrologic cycle in response to increasing CO₂, the net effect of changes in surface freshwater fluxes on those density classes that are involved in deep-water formation is to increase their density; that is, changes in surface freshwater fluxes act to maintain a stronger overturning circulation. The differences in the control experiment overturning strength and the response to increasing CO₂ are well predicted by the corresponding differences in the water-mass transformation rate. Reduction of meridional heat transport and enhancement of meridional salt transport from mid to high latitudes with increasing CO₂ also act to strengthen the overturning circulation. Analysis of the trends in an ideal age tracer provides a direct measure of changes in ocean ventilation time scale in response to increasing CO₂. In the subpolar North Atlantic south of the Greenland–Scotland ridge system, there is a significant increase in subsurface ages as open-ocean deep convection is diminished and ventilation switches to a predominance of overflow waters. In middle and low latitudes there is a decrease in age within and just below the thermocline in response to a decrease in the upwelling of old deep waters. However, when considering ventilation within isopycnal layers, age increases for layers in and below the thermocline due to the deepening of isopycnals in response to global warming. |
---|---|
ISSN: | 0894-8755 1520-0442 |
DOI: | 10.1175/JCLI3757.1 |