Arrayed waveguide grating spectrometers for astronomical applications: new results

One promising application of photonics to astronomical instrumentation is the miniaturization of near-infrared (NIR) spectrometers for large ground- and space-based astronomical telescopes. Here we present new results from our effort to fabricate arrayed waveguide grating (AWG) spectrometers for ast...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2017-07, Vol.25 (15), p.17918-17935
Hauptverfasser: Gatkine, Pradip, Veilleux, Sylvain, Hu, Yiwen, Bland-Hawthorn, Joss, Dagenais, Mario
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One promising application of photonics to astronomical instrumentation is the miniaturization of near-infrared (NIR) spectrometers for large ground- and space-based astronomical telescopes. Here we present new results from our effort to fabricate arrayed waveguide grating (AWG) spectrometers for astronomical applications entirely in-house. Our latest devices have a peak overall of ∼23%, a spectral resolving power (λ/δλ) of ~1300, and cover the entire H band (1450-1650 nm) for Transverse Electric (TE) polarization. These AWGs use a silica-on-silicon platform with a very thin layer of Si N as the core of the waveguides. They have a free spectral range of ~10 nm at a of ~1600 about wavelength nm and a contrast ratio or crosstalk of 2% (-17 dB). Various practical aspects of implementing AWGs as astronomical spectrographs are discussed, including the coupling of the light between the fibers and AWGs, high-temperature annealing to improve the throughput of the devices at ~1500 nm, cleaving at the output focal plane of the AWG to provide continuous wavelength coverage, and a novel algorithm to make the devices polarization insensitive over a broad band. These milestones will guide the development of the next generation of AWGs with wider free spectral range and higher resolving power and throughput.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.25.017918