Randomized apertures: high resolution imaging in far field
We explore opportunities afforded by an extremely large telescope design comprised of ill-figured randomly varying subapertures. The veracity of this approach is demonstrated with a laboratory scaled system whereby we reconstruct a white light binary point source separated by 2.5 times the diffracti...
Gespeichert in:
Veröffentlicht in: | Optics express 2017-07, Vol.25 (15), p.18296-18313 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We explore opportunities afforded by an extremely large telescope design comprised of ill-figured randomly varying subapertures. The veracity of this approach is demonstrated with a laboratory scaled system whereby we reconstruct a white light binary point source separated by 2.5 times the diffraction limit. With an inherently unknown varying random point spread function, the measured speckle images require a restoration framework that combine support vector machine based lucky imaging and non-negative matrix factorization based multiframe blind deconvolution. To further validate the approach, we model the experimental system to explore sub-diffraction-limited performance, and an object comprised of multiple point sources. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/oe.25.018296 |