Dispersion of speckle suppression efficiency for binary DOE structures: spectral domain and coherent matrix approaches

We present the first general theoretical description of speckle suppression efficiency based on an active diffractive optical element (DOE). The approach is based on spectral analysis of diffracted beams and a coherent matrix. Analytical formulae are obtained for the dispersion of speckle suppressio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2017-06, Vol.25 (13), p.14575-14597
Hauptverfasser: Lapchuk, Anatoliy, Prygun, Olexandr, Fu, Minglei, Le, Zichun, Xiong, Qiyuan, Kryuchyn, Andriy
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present the first general theoretical description of speckle suppression efficiency based on an active diffractive optical element (DOE). The approach is based on spectral analysis of diffracted beams and a coherent matrix. Analytical formulae are obtained for the dispersion of speckle suppression efficiency using different DOE structures and different DOE activation methods. We show that a one-sided 2D DOE structure has smaller speckle suppression range than a two-sided 1D DOE structure. Both DOE structures have sufficient speckle suppression range to suppress low-order speckles in the entire visible range, but only the two-sided 1D DOE can suppress higher-order speckles. We also show that a linear shift 2D DOE in a laser projector with a large numerical aperture has higher effective speckle suppression efficiency than the method using switching or step-wise shift DOE structures. The generalized theoretical models elucidate the mechanism and practical realization of speckle suppression.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.25.014575