Boron: Enabling Exciting Metal-Rich Structures and Magnetic Properties
Conspectus Boron’s unique chemical properties and its reactions with metals have yielded the large class of metal borides with compositions ranging from the most boron-rich YB66 (used as monochromator for synchrotron radiation) up to the most metal-rich Nd2Fe14B (the best permanent magnet to date)....
Gespeichert in:
Veröffentlicht in: | Accounts of chemical research 2017-09, Vol.50 (9), p.2317-2325 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Conspectus Boron’s unique chemical properties and its reactions with metals have yielded the large class of metal borides with compositions ranging from the most boron-rich YB66 (used as monochromator for synchrotron radiation) up to the most metal-rich Nd2Fe14B (the best permanent magnet to date). The excellent magnetic properties of the latter compound originate from its unique crystal structure to which the presence of boron is essential. In general, knowing the crystal structure of any given extended solid is the prerequisite to understanding its physical properties and eventually predicting new synthetic targets with desirable properties. The ability of boron to form strong chemical bonds with itself and with metallic elements has enabled us to construct new structures with exciting properties. In recent years, we have discovered new boride structures containing some unprecedented boron fragments (trigonal planar B4 units, planar B6 rings) and low-dimensional substructures of magnetically active elements (ladders, scaffolds, chains of triangles). The new boride structures have led to new superconducting materials (e.g., NbRuB) and to new itinerant magnetic materials (e.g., Nb6Fe1–x Ir6+x B8). The study of boride compounds containing chains (Fe-chains in antiferromagnetic Sc2FeRu5B2), ladders (Fe-ladders in ferromagnetic Ti9Fe2Rh18B8), and chains of triangles (Cr3 chains in ferrimagnetic and frustrated TiCrIr2B2) of magnetically active elements allowed us to gain a deep understanding of the factors (using density functional theory calculations) that can affect magnetic ordering of such low-dimensional magnetic units. We discovered that the magnetic properties of phases containing these magnetic subunits can be drastically tuned by chemical substitution within the metallic nonmagnetic network. For example, the small hysteresis (measure of magnetic energy storage) of Ti2FeRh5B2 can be successively increased up to 24-times by gradually substituting Ru for Rh, a result that was even surpassed (up to 54-times the initial value) for Ru/Ir substitutions. Also, the type of long-range magnetic interactions could be drastically tuned by appropriate substitutions in the metallic nonmagnetic network as demonstrated using both experimental and theoretical methods. It turned out that Ru-rich and valence electron poor metal borides adopting the Ti3Co5B2 or the Th7Fe3 structure types have dominating antiferromagnetic interactions, while in Rh-rich (or Ir-rich) and val |
---|---|
ISSN: | 0001-4842 1520-4898 |
DOI: | 10.1021/acs.accounts.7b00268 |