Kardar-Parisi-Zhang Interfaces with Inward Growth
We study the (1+1)-dimensional Kardar-Parisi-Zhang (KPZ) interfaces growing inward from ring-shaped initial conditions, experimentally and numerically, using growth of a turbulent state in liquid-crystal electroconvection and an off-lattice Eden model, respectively. To realize the ring initial condi...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2017-07, Vol.119 (3), p.030602-030602, Article 030602 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the (1+1)-dimensional Kardar-Parisi-Zhang (KPZ) interfaces growing inward from ring-shaped initial conditions, experimentally and numerically, using growth of a turbulent state in liquid-crystal electroconvection and an off-lattice Eden model, respectively. To realize the ring initial condition experimentally, we introduce a holography-based technique that allows us to design the initial condition arbitrarily. Then, we find that fluctuation properties of ingrowing circular interfaces are distinct from those for the curved or circular KPZ subclass and, instead, are characterized by the flat subclass. More precisely, we find an asymptotic approach to the Tracy-Widom distribution for the Gaussian orthogonal ensemble and the Airy_{1} spatial correlation, as long as time is much shorter than the characteristic time determined by the initial curvature. Near this characteristic time, deviation from the flat KPZ subclass is found, which can be explained in terms of the correlation length and the circumference. Our results indicate that the sign of the initial curvature has a crucial role in determining the universal distribution and correlation functions of the KPZ class. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.119.030602 |