Stage-dependent expression of an angiogenic agent and vascular organization in experimental skin tumor development

Increased angiogenesis and expression of antibodies to vascular endothelial growth factor (VEGF), an angiogenic agent, have been shown in the tumor development of many tissues. Areas of skin expressing VEGF and total volume of vessels expressing laminin in the wall were measured in chemical carcinog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxicologic pathology 2003-09, Vol.31 (5), p.539-548
Hauptverfasser: NÄYHÄ, Veera, LAITAKARI, Jaakko, STENBÄCK, Frej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Increased angiogenesis and expression of antibodies to vascular endothelial growth factor (VEGF), an angiogenic agent, have been shown in the tumor development of many tissues. Areas of skin expressing VEGF and total volume of vessels expressing laminin in the wall were measured in chemical carcinogen-exposed mice using CAS-200 morphometry apparatus having a sensitivity exceeding 99% and reproducibility exceeding 99%. The area of VEGF expression was increased in carcinogen-exposed skin, dysplasia and in well-differentiated squamous cell carcinomas, but decreased in squamous cell carcinomas with decreased degree of differentiation. The vessel volume increased prior to the formation of tumors in carcinogen-exposed skin as well as in highly malignant neoplasms. In well-differentiated squamous cell carcinomas with an expansive growth pattern, the vessels were parallel to the basal membrane, in moderately differentiated tumors the vessels were in the direction of tumor invasion, and in poorly differentiated tumors, active angiogenesis consisted of numerous, enlarged vessels within the tumor. This study showed increased VEGF expression and number of vessels occurring in early stages of skin tumor development, pointing to a role of angiogenesis in chemical risk assessment and in cancer prevention. Altered vessel structure and vessel arrangement were distinct in later stages of tumor growth and in malignant neoplasms, pointing to the utility of detailed vessel analysis in neoplasm characterization.
ISSN:0192-6233
1533-1601
DOI:10.1080/01926230309791