In situ growth of cobalt sulfide hollow nanospheres embedded in nitrogen and sulfur co-doped graphene nanoholes as a highly active electrocatalyst for oxygen reduction and evolution

Developing high-performance bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) using nonprecious metal-based catalysts is a major challenge for achieving the commercial success of regenerative fuel cells and rechargeable metal-air batteries....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2017, Vol.5 (24), p.12354-12360
Hauptverfasser: Qiao, Xiaochang, Jin, Jutao, Fan, Hongbo, Li, Yingwei, Liao, Shijun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Developing high-performance bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) using nonprecious metal-based catalysts is a major challenge for achieving the commercial success of regenerative fuel cells and rechargeable metal-air batteries. In the present study, we designed a new type of bifunctional catalyst by embedding cobalt sulfide hollow nanospheres in nitrogen and sulfur co-doped graphene nanoholes (Co1-xS/N-S-G) via a simple, one-pot pyrolysis method. The catalyst had a high specific surface area (390.6 m2 g-1) with a hierarchical meso-macroporous structure. In an alkaline medium, the catalyst exhibited high ORR catalytic activity, with a half-wave potential 30 mV more positive and a diffusion-limiting current density 15% higher than a commercial Pt/C catalyst, and the catalyst is also highly active for OER with a small overpotential of 371 mV for 10 mA cm-2 current density. Its overall oxygen electrode activity parameter ( Delta E) is 0.760 V, which is smaller than that of Pt/C and most of the non-precious metal catalysts in previous studies. Furthermore, it demonstrated better durability towards both the ORR and OER. Detailed investigation clarified that the material's excellent electrocatalytic performance is attributable to: (1) a synergistic effect, induced by the presence of multiple types of active sites, including cobalt sulfide hollow nanospheres, nitrogen and sulfur dopants, and possible Co-N-C sites; (2) cobalt sulfide hollow nanospheres penetrating through the plane of graphene sheets form strong interaction between them; (3) more edge defects associated with the existence of nanoholes on the graphene basal plane; and (4) the high surface area and efficient mass transfer arising from the hierarchical porous structure.
ISSN:2050-7488
2050-7496
DOI:10.1039/c7ta00993c