Hydrogen adsorption on MoS2-surfaces: a DFT study on preferential sites and the effect of sulfur and hydrogen coverage

We report a comprehensive computational study of the intricate structure-property relationships governing the hydrogen adsorption trends on MoS2 edges with varying S- and H-coverages, as well as provide insights into the role of individual adsorption sites. Additionally, the effect of single- and du...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2017, Vol.19 (24), p.16231-16241
Hauptverfasser: Kronberg, Rasmus, Hakala, Mikko, Holmberg, Nico, Laasonen, Kari
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report a comprehensive computational study of the intricate structure-property relationships governing the hydrogen adsorption trends on MoS2 edges with varying S- and H-coverages, as well as provide insights into the role of individual adsorption sites. Additionally, the effect of single- and dual S-vacancies in the basal plane on the adsorption energetics is assessed, likewise with an emphasis on the H-coverage dependency. The employed edge/site-selective approach reveals significant variations in the adsorption free energies, ranging between ∼±1.0 eV for the different edges-types and S-saturations, including differences of even as much as ∼1.2 eV between sites on the same edge. The incrementally increasing hydrogen coverage is seen to mainly weaken the adsorption, but intriguingly for certain configurations a stabilizing effect is also observed. The strengthened binding is seen to be coupled with significant surface restructuring, most notably the splitting of terminal S2-dimers. Our work links the energetics of hydrogen adsorption on 2H-MoS2 to both static and dynamic geometrical features and quantifies the observed trends as a function of H-coverage, thus illustrating the complex structure/activity relationships of the MoS2 catalyst. The results of this systematical study aims to serve as guidance for experimentalists by suggesting feasible edge/S-coverage combinations, the synthesis of which would potentially yield the most optimally performing HER-catalysts.
ISSN:1463-9076
1463-9084
DOI:10.1039/c7cp03068a