Direct Observation of the Band Gap Transition in Atomically Thin ReS2

ReS2 is considered as a promising candidate for novel electronic and sensor applications. The low crystal symmetry of this van der Waals compound leads to a highly anisotropic optical, vibrational, and transport behavior. However, the details of the electronic band structure of this fascinating mate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2017-09, Vol.17 (9), p.5187-5192
Hauptverfasser: Gehlmann, Mathias, Aguilera, Irene, Bihlmayer, Gustav, Nemšák, Slavomír, Nagler, Philipp, Gospodarič, Pika, Zamborlini, Giovanni, Eschbach, Markus, Feyer, Vitaliy, Kronast, Florian, Młyńczak, Ewa, Korn, Tobias, Plucinski, Lukasz, Schüller, Christian, Blügel, Stefan, Schneider, Claus M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ReS2 is considered as a promising candidate for novel electronic and sensor applications. The low crystal symmetry of this van der Waals compound leads to a highly anisotropic optical, vibrational, and transport behavior. However, the details of the electronic band structure of this fascinating material are still largely unexplored. We present a momentum-resolved study of the electronic structure of monolayer, bilayer, and bulk ReS2 using k-space photoemission microscopy in combination with first-principles calculations. We demonstrate that the valence electrons in bulk ReS2 arecontrary to assumptions in recent literaturesignificantly delocalized across the van der Waals gap. Furthermore, we directly observe the evolution of the valence band dispersion as a function of the number of layers, revealing the transition from an indirect band gap in bulk ReS2 to a direct gap in the bilayer and the monolayer. We also find a significantly increased effective hole mass in single-layer crystals. Our results establish bilayer ReS2 as an advantageous building block for two-dimensional devices and van der Waals heterostructures.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.7b00627