Octagonal Wetting Interface Evolution of Evaporating Saline Droplets on a Micropyramid Patterned Surface
Textured surfaces have been extensively employed to investigate the dynamics, wetting phenomena, and shape of liquid droplets. Droplet shape can be controlled via the manipulation of topographic or chemical heterogeneity of a solid surface by anchoring the three-phase line at specific sites. In this...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2017-08, Vol.9 (33), p.28055-28063 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28063 |
---|---|
container_issue | 33 |
container_start_page | 28055 |
container_title | ACS applied materials & interfaces |
container_volume | 9 |
creator | Zhong, Xin Ren, Junheng Lin, Mingfeng Chong, Karen Siew Ling Ong, Kian-Soo Duan, Fei |
description | Textured surfaces have been extensively employed to investigate the dynamics, wetting phenomena, and shape of liquid droplets. Droplet shape can be controlled via the manipulation of topographic or chemical heterogeneity of a solid surface by anchoring the three-phase line at specific sites. In this study, we demonstrate that droplet shape on a topographically patterned surface can be modified by varying the concentration of salt potassium chloride (KCl) in the droplet solution. It is found that at the beginning of evaporation the octagonal shape of the solid–liquid interface is changed to a rectangle with corners cut upon increasing the salt concentration. Such a variation in the solid–liquid interface versus the salt concentration is explained by the analysis of free energy difference. It indicates that the increases in solid–liquid and liquid–vapor surface tensions by raising the salt concentration result in a favored extension of the three-phase line intersecting the micropyramid bottom sides than the counterpart intersecting the micropyramid diagonal edges. The saline droplets experience a pinning stage at first and a depinning one afterward. The onset of depinning is delayed, and at which the instantaneous contact angle is larger upon raising the salt concentration. The three-phase line which intersects the micropyramid diagonal edges recedes ahead of the one along the micropyramid bottom sides, making the octagonal wetting interface evolve toward a circle. A close view at the droplet edge indicates that the three-phase line repeats “slow slip–rapid slip” across row by row of micropyramids during the depinning stage. |
doi_str_mv | 10.1021/acsami.7b07533 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1925276481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1925276481</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-e052d92f022a7012eb2098dcd6bc2126190124d374689218198f897277e224283</originalsourceid><addsrcrecordid>eNp1kM1LwzAYh4Mobk6vHiVHETqTtx9JjjKnDpQJUzyWtE1nR9vUJBX23xvXuZun94Pn_fHyIHRJyZQSoLcyt7KppiwjLA7DIzSmIooCDjEcH_ooGqEzazeEJCGQ-BSNgLMEGBVj9LnMnVzrVtb4QzlXtWu8aJ0ypcwVnn_runeVbrEu_SA7beQOWcm6ahW-N7qrlbPYExK_VLmft8b_U-BX6XxKqwq86ndh5-iklLVVF_s6Qe8P87fZU_C8fFzM7p4DGYbEBYrEUAgoCYBkhILKgAhe5EWS5UAhocIvoyJkUcIFUE4FL7lgwJgCiICHE3Q95HZGf_XKurSpbK7qWrZK9zalwrthScSpR6cD6v-21qgy7UzVSLNNKUl_7aaD3XRv1x9c7bP7rFHFAf_T6YGbAfCH6Ub3xnu1_6X9AJ3og-o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925276481</pqid></control><display><type>article</type><title>Octagonal Wetting Interface Evolution of Evaporating Saline Droplets on a Micropyramid Patterned Surface</title><source>ACS Publications</source><creator>Zhong, Xin ; Ren, Junheng ; Lin, Mingfeng ; Chong, Karen Siew Ling ; Ong, Kian-Soo ; Duan, Fei</creator><creatorcontrib>Zhong, Xin ; Ren, Junheng ; Lin, Mingfeng ; Chong, Karen Siew Ling ; Ong, Kian-Soo ; Duan, Fei</creatorcontrib><description>Textured surfaces have been extensively employed to investigate the dynamics, wetting phenomena, and shape of liquid droplets. Droplet shape can be controlled via the manipulation of topographic or chemical heterogeneity of a solid surface by anchoring the three-phase line at specific sites. In this study, we demonstrate that droplet shape on a topographically patterned surface can be modified by varying the concentration of salt potassium chloride (KCl) in the droplet solution. It is found that at the beginning of evaporation the octagonal shape of the solid–liquid interface is changed to a rectangle with corners cut upon increasing the salt concentration. Such a variation in the solid–liquid interface versus the salt concentration is explained by the analysis of free energy difference. It indicates that the increases in solid–liquid and liquid–vapor surface tensions by raising the salt concentration result in a favored extension of the three-phase line intersecting the micropyramid bottom sides than the counterpart intersecting the micropyramid diagonal edges. The saline droplets experience a pinning stage at first and a depinning one afterward. The onset of depinning is delayed, and at which the instantaneous contact angle is larger upon raising the salt concentration. The three-phase line which intersects the micropyramid diagonal edges recedes ahead of the one along the micropyramid bottom sides, making the octagonal wetting interface evolve toward a circle. A close view at the droplet edge indicates that the three-phase line repeats “slow slip–rapid slip” across row by row of micropyramids during the depinning stage.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.7b07533</identifier><identifier>PMID: 28762719</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials & interfaces, 2017-08, Vol.9 (33), p.28055-28063</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-e052d92f022a7012eb2098dcd6bc2126190124d374689218198f897277e224283</citedby><cites>FETCH-LOGICAL-a330t-e052d92f022a7012eb2098dcd6bc2126190124d374689218198f897277e224283</cites><orcidid>0000-0002-7469-7184</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.7b07533$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.7b07533$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28762719$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhong, Xin</creatorcontrib><creatorcontrib>Ren, Junheng</creatorcontrib><creatorcontrib>Lin, Mingfeng</creatorcontrib><creatorcontrib>Chong, Karen Siew Ling</creatorcontrib><creatorcontrib>Ong, Kian-Soo</creatorcontrib><creatorcontrib>Duan, Fei</creatorcontrib><title>Octagonal Wetting Interface Evolution of Evaporating Saline Droplets on a Micropyramid Patterned Surface</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Textured surfaces have been extensively employed to investigate the dynamics, wetting phenomena, and shape of liquid droplets. Droplet shape can be controlled via the manipulation of topographic or chemical heterogeneity of a solid surface by anchoring the three-phase line at specific sites. In this study, we demonstrate that droplet shape on a topographically patterned surface can be modified by varying the concentration of salt potassium chloride (KCl) in the droplet solution. It is found that at the beginning of evaporation the octagonal shape of the solid–liquid interface is changed to a rectangle with corners cut upon increasing the salt concentration. Such a variation in the solid–liquid interface versus the salt concentration is explained by the analysis of free energy difference. It indicates that the increases in solid–liquid and liquid–vapor surface tensions by raising the salt concentration result in a favored extension of the three-phase line intersecting the micropyramid bottom sides than the counterpart intersecting the micropyramid diagonal edges. The saline droplets experience a pinning stage at first and a depinning one afterward. The onset of depinning is delayed, and at which the instantaneous contact angle is larger upon raising the salt concentration. The three-phase line which intersects the micropyramid diagonal edges recedes ahead of the one along the micropyramid bottom sides, making the octagonal wetting interface evolve toward a circle. A close view at the droplet edge indicates that the three-phase line repeats “slow slip–rapid slip” across row by row of micropyramids during the depinning stage.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LwzAYh4Mobk6vHiVHETqTtx9JjjKnDpQJUzyWtE1nR9vUJBX23xvXuZun94Pn_fHyIHRJyZQSoLcyt7KppiwjLA7DIzSmIooCDjEcH_ooGqEzazeEJCGQ-BSNgLMEGBVj9LnMnVzrVtb4QzlXtWu8aJ0ypcwVnn_runeVbrEu_SA7beQOWcm6ahW-N7qrlbPYExK_VLmft8b_U-BX6XxKqwq86ndh5-iklLVVF_s6Qe8P87fZU_C8fFzM7p4DGYbEBYrEUAgoCYBkhILKgAhe5EWS5UAhocIvoyJkUcIFUE4FL7lgwJgCiICHE3Q95HZGf_XKurSpbK7qWrZK9zalwrthScSpR6cD6v-21qgy7UzVSLNNKUl_7aaD3XRv1x9c7bP7rFHFAf_T6YGbAfCH6Ub3xnu1_6X9AJ3og-o</recordid><startdate>20170823</startdate><enddate>20170823</enddate><creator>Zhong, Xin</creator><creator>Ren, Junheng</creator><creator>Lin, Mingfeng</creator><creator>Chong, Karen Siew Ling</creator><creator>Ong, Kian-Soo</creator><creator>Duan, Fei</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7469-7184</orcidid></search><sort><creationdate>20170823</creationdate><title>Octagonal Wetting Interface Evolution of Evaporating Saline Droplets on a Micropyramid Patterned Surface</title><author>Zhong, Xin ; Ren, Junheng ; Lin, Mingfeng ; Chong, Karen Siew Ling ; Ong, Kian-Soo ; Duan, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-e052d92f022a7012eb2098dcd6bc2126190124d374689218198f897277e224283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Xin</creatorcontrib><creatorcontrib>Ren, Junheng</creatorcontrib><creatorcontrib>Lin, Mingfeng</creatorcontrib><creatorcontrib>Chong, Karen Siew Ling</creatorcontrib><creatorcontrib>Ong, Kian-Soo</creatorcontrib><creatorcontrib>Duan, Fei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Xin</au><au>Ren, Junheng</au><au>Lin, Mingfeng</au><au>Chong, Karen Siew Ling</au><au>Ong, Kian-Soo</au><au>Duan, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Octagonal Wetting Interface Evolution of Evaporating Saline Droplets on a Micropyramid Patterned Surface</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2017-08-23</date><risdate>2017</risdate><volume>9</volume><issue>33</issue><spage>28055</spage><epage>28063</epage><pages>28055-28063</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Textured surfaces have been extensively employed to investigate the dynamics, wetting phenomena, and shape of liquid droplets. Droplet shape can be controlled via the manipulation of topographic or chemical heterogeneity of a solid surface by anchoring the three-phase line at specific sites. In this study, we demonstrate that droplet shape on a topographically patterned surface can be modified by varying the concentration of salt potassium chloride (KCl) in the droplet solution. It is found that at the beginning of evaporation the octagonal shape of the solid–liquid interface is changed to a rectangle with corners cut upon increasing the salt concentration. Such a variation in the solid–liquid interface versus the salt concentration is explained by the analysis of free energy difference. It indicates that the increases in solid–liquid and liquid–vapor surface tensions by raising the salt concentration result in a favored extension of the three-phase line intersecting the micropyramid bottom sides than the counterpart intersecting the micropyramid diagonal edges. The saline droplets experience a pinning stage at first and a depinning one afterward. The onset of depinning is delayed, and at which the instantaneous contact angle is larger upon raising the salt concentration. The three-phase line which intersects the micropyramid diagonal edges recedes ahead of the one along the micropyramid bottom sides, making the octagonal wetting interface evolve toward a circle. A close view at the droplet edge indicates that the three-phase line repeats “slow slip–rapid slip” across row by row of micropyramids during the depinning stage.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28762719</pmid><doi>10.1021/acsami.7b07533</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7469-7184</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2017-08, Vol.9 (33), p.28055-28063 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_1925276481 |
source | ACS Publications |
title | Octagonal Wetting Interface Evolution of Evaporating Saline Droplets on a Micropyramid Patterned Surface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A41%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Octagonal%20Wetting%20Interface%20Evolution%20of%20Evaporating%20Saline%20Droplets%20on%20a%20Micropyramid%20Patterned%20Surface&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Zhong,%20Xin&rft.date=2017-08-23&rft.volume=9&rft.issue=33&rft.spage=28055&rft.epage=28063&rft.pages=28055-28063&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.7b07533&rft_dat=%3Cproquest_cross%3E1925276481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1925276481&rft_id=info:pmid/28762719&rfr_iscdi=true |