Octagonal Wetting Interface Evolution of Evaporating Saline Droplets on a Micropyramid Patterned Surface

Textured surfaces have been extensively employed to investigate the dynamics, wetting phenomena, and shape of liquid droplets. Droplet shape can be controlled via the manipulation of topographic or chemical heterogeneity of a solid surface by anchoring the three-phase line at specific sites. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2017-08, Vol.9 (33), p.28055-28063
Hauptverfasser: Zhong, Xin, Ren, Junheng, Lin, Mingfeng, Chong, Karen Siew Ling, Ong, Kian-Soo, Duan, Fei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Textured surfaces have been extensively employed to investigate the dynamics, wetting phenomena, and shape of liquid droplets. Droplet shape can be controlled via the manipulation of topographic or chemical heterogeneity of a solid surface by anchoring the three-phase line at specific sites. In this study, we demonstrate that droplet shape on a topographically patterned surface can be modified by varying the concentration of salt potassium chloride (KCl) in the droplet solution. It is found that at the beginning of evaporation the octagonal shape of the solid–liquid interface is changed to a rectangle with corners cut upon increasing the salt concentration. Such a variation in the solid–liquid interface versus the salt concentration is explained by the analysis of free energy difference. It indicates that the increases in solid–liquid and liquid–vapor surface tensions by raising the salt concentration result in a favored extension of the three-phase line intersecting the micropyramid bottom sides than the counterpart intersecting the micropyramid diagonal edges. The saline droplets experience a pinning stage at first and a depinning one afterward. The onset of depinning is delayed, and at which the instantaneous contact angle is larger upon raising the salt concentration. The three-phase line which intersects the micropyramid diagonal edges recedes ahead of the one along the micropyramid bottom sides, making the octagonal wetting interface evolve toward a circle. A close view at the droplet edge indicates that the three-phase line repeats “slow slip–rapid slip” across row by row of micropyramids during the depinning stage.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.7b07533