Rational elimination of Aspergillus terreus sulochrin production

Elimination of undesirable co-metabolites from industrial fermentations is often required due to the toxicities associated with the contaminants and/or due to difficulties in removing the contaminants during downstream processing. Sulochrin is a co-metabolite produced during the Aspergillus terreus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biotechnology 2004-03, Vol.108 (2), p.171-177
Hauptverfasser: Couch, Robin D., Gaucher, G.Maurice
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Elimination of undesirable co-metabolites from industrial fermentations is often required due to the toxicities associated with the contaminants and/or due to difficulties in removing the contaminants during downstream processing. Sulochrin is a co-metabolite produced during the Aspergillus terreus lovastatin fermentation. Examination of the sulochrin biosynthetic pathway identifies the emodin anthrone polyketide synthase (PKS) at the origin. Thus, genetically disrupting the emodin anthrone PKS gene was expected to result in the elimination of sulochrin biosynthesis. To perform the disruption by homologous recombination, a fragment of the emodin anthrone PKS gene first needed to be isolated. Analysis of several reported fungal PKS amino acid sequences has identified three subfamilies of related sequences (called the Patulin subfamily, the Pigment subfamily, and the Reduction subfamily). PCR primers specific for the Pigment subfamily (of which the emodin anthrone PKS is expected to belong) were used to isolate a fragment of a novel PKS gene from A. terreus. Targeted gene disruption identifies the novel gene fragment as that from the emodin anthrone PKS. Consequently, the gene disruption event eliminated the production of metabolites from the sulochrin biosynthetic pathway.
ISSN:0168-1656
1873-4863
DOI:10.1016/j.jbiotec.2003.10.021