Decomposition approach to the stability of recurrent neural networks with asynchronous time delays in quaternion field

In this paper, the global exponential stability for recurrent neural networks (QVNNs) with asynchronous time delays is investigated in quaternion field. Due to the non-commutativity of quaternion multiplication resulting from Hamilton rules: ij=−ji=k, jk=−kj=i, ki=−ik=j, ijk=i2=j2=k2=−1, the QVNN is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2017-10, Vol.94, p.55-66
Hauptverfasser: Zhang, Dandan, Kou, Kit Ian, Liu, Yang, Cao, Jinde
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 66
container_issue
container_start_page 55
container_title Neural networks
container_volume 94
creator Zhang, Dandan
Kou, Kit Ian
Liu, Yang
Cao, Jinde
description In this paper, the global exponential stability for recurrent neural networks (QVNNs) with asynchronous time delays is investigated in quaternion field. Due to the non-commutativity of quaternion multiplication resulting from Hamilton rules: ij=−ji=k, jk=−kj=i, ki=−ik=j, ijk=i2=j2=k2=−1, the QVNN is decomposed into four real-valued systems, which are studied separately. The exponential convergence is proved directly accompanied with the existence and uniqueness of the equilibrium point to the consider systems. Combining with the generalized ∞-norm and Cauchy convergence property in the quaternion field, some sufficient conditions to guarantee the stability are established without using any Lyapunov–Krasovskii functional and linear matrix inequality. Finally, a numerical example is given to demonstrate the effectiveness of the results.
doi_str_mv 10.1016/j.neunet.2017.06.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1924604366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608017301508</els_id><sourcerecordid>1924604366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-45ad1043f24730b95e83eaba887a5f3d38ad760a9eed267a0daade926d491b2a3</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi0EokvhHyDkI5cEf8VxLkio5UuqxAXO1iSeaL0k9tZ2Wu2_x6stHDnN5X3nmXkIectZyxnXHw5twC1gaQXjfct0y7h6Rnbc9EMjeiOekx0zg2w0M-yKvMr5wBjTRsmX5EqYvpNKdTvycItTXI8x--JjoHA8pgjTnpZIyx5pLjD6xZcTjTNNOG0pYSi0khMsdZTHmH5n-ujLnkI-hWmfYohbpsWvSB0ucMrUB3q_QcEUzojZ4-JekxczLBnfPM1r8uvL558335q7H1-_33y6ayapRWlUB44zJWehesnGoUMjEUYwpodulk4acL1mMCA6oXtgDsDhILRTAx8FyGvy_rK3vnW_YS529XnCZYGA9UzLB6F0BWhdo-oSnVLMOeFsj8mvkE6WM3s2bg_2YtyejVumbTVea--eCNu4ovtX-qu4Bj5eAlj_fPCYbJ48hgmdr0KLddH_n_AHcn-XoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1924604366</pqid></control><display><type>article</type><title>Decomposition approach to the stability of recurrent neural networks with asynchronous time delays in quaternion field</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Dandan ; Kou, Kit Ian ; Liu, Yang ; Cao, Jinde</creator><creatorcontrib>Zhang, Dandan ; Kou, Kit Ian ; Liu, Yang ; Cao, Jinde</creatorcontrib><description>In this paper, the global exponential stability for recurrent neural networks (QVNNs) with asynchronous time delays is investigated in quaternion field. Due to the non-commutativity of quaternion multiplication resulting from Hamilton rules: ij=−ji=k, jk=−kj=i, ki=−ik=j, ijk=i2=j2=k2=−1, the QVNN is decomposed into four real-valued systems, which are studied separately. The exponential convergence is proved directly accompanied with the existence and uniqueness of the equilibrium point to the consider systems. Combining with the generalized ∞-norm and Cauchy convergence property in the quaternion field, some sufficient conditions to guarantee the stability are established without using any Lyapunov–Krasovskii functional and linear matrix inequality. Finally, a numerical example is given to demonstrate the effectiveness of the results.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2017.06.014</identifier><identifier>PMID: 28753445</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Asynchronous time delay ; Global exponential stability ; Linear matrix inequality ; Neural Networks (Computer) ; Quaternion-valued neural network ; Time Factors</subject><ispartof>Neural networks, 2017-10, Vol.94, p.55-66</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-45ad1043f24730b95e83eaba887a5f3d38ad760a9eed267a0daade926d491b2a3</citedby><cites>FETCH-LOGICAL-c362t-45ad1043f24730b95e83eaba887a5f3d38ad760a9eed267a0daade926d491b2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0893608017301508$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28753445$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Dandan</creatorcontrib><creatorcontrib>Kou, Kit Ian</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Cao, Jinde</creatorcontrib><title>Decomposition approach to the stability of recurrent neural networks with asynchronous time delays in quaternion field</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>In this paper, the global exponential stability for recurrent neural networks (QVNNs) with asynchronous time delays is investigated in quaternion field. Due to the non-commutativity of quaternion multiplication resulting from Hamilton rules: ij=−ji=k, jk=−kj=i, ki=−ik=j, ijk=i2=j2=k2=−1, the QVNN is decomposed into four real-valued systems, which are studied separately. The exponential convergence is proved directly accompanied with the existence and uniqueness of the equilibrium point to the consider systems. Combining with the generalized ∞-norm and Cauchy convergence property in the quaternion field, some sufficient conditions to guarantee the stability are established without using any Lyapunov–Krasovskii functional and linear matrix inequality. Finally, a numerical example is given to demonstrate the effectiveness of the results.</description><subject>Asynchronous time delay</subject><subject>Global exponential stability</subject><subject>Linear matrix inequality</subject><subject>Neural Networks (Computer)</subject><subject>Quaternion-valued neural network</subject><subject>Time Factors</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1v1DAQhi0EokvhHyDkI5cEf8VxLkio5UuqxAXO1iSeaL0k9tZ2Wu2_x6stHDnN5X3nmXkIectZyxnXHw5twC1gaQXjfct0y7h6Rnbc9EMjeiOekx0zg2w0M-yKvMr5wBjTRsmX5EqYvpNKdTvycItTXI8x--JjoHA8pgjTnpZIyx5pLjD6xZcTjTNNOG0pYSi0khMsdZTHmH5n-ujLnkI-hWmfYohbpsWvSB0ucMrUB3q_QcEUzojZ4-JekxczLBnfPM1r8uvL558335q7H1-_33y6ayapRWlUB44zJWehesnGoUMjEUYwpodulk4acL1mMCA6oXtgDsDhILRTAx8FyGvy_rK3vnW_YS529XnCZYGA9UzLB6F0BWhdo-oSnVLMOeFsj8mvkE6WM3s2bg_2YtyejVumbTVea--eCNu4ovtX-qu4Bj5eAlj_fPCYbJ48hgmdr0KLddH_n_AHcn-XoQ</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Zhang, Dandan</creator><creator>Kou, Kit Ian</creator><creator>Liu, Yang</creator><creator>Cao, Jinde</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201710</creationdate><title>Decomposition approach to the stability of recurrent neural networks with asynchronous time delays in quaternion field</title><author>Zhang, Dandan ; Kou, Kit Ian ; Liu, Yang ; Cao, Jinde</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-45ad1043f24730b95e83eaba887a5f3d38ad760a9eed267a0daade926d491b2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Asynchronous time delay</topic><topic>Global exponential stability</topic><topic>Linear matrix inequality</topic><topic>Neural Networks (Computer)</topic><topic>Quaternion-valued neural network</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Dandan</creatorcontrib><creatorcontrib>Kou, Kit Ian</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Cao, Jinde</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Dandan</au><au>Kou, Kit Ian</au><au>Liu, Yang</au><au>Cao, Jinde</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decomposition approach to the stability of recurrent neural networks with asynchronous time delays in quaternion field</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2017-10</date><risdate>2017</risdate><volume>94</volume><spage>55</spage><epage>66</epage><pages>55-66</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>In this paper, the global exponential stability for recurrent neural networks (QVNNs) with asynchronous time delays is investigated in quaternion field. Due to the non-commutativity of quaternion multiplication resulting from Hamilton rules: ij=−ji=k, jk=−kj=i, ki=−ik=j, ijk=i2=j2=k2=−1, the QVNN is decomposed into four real-valued systems, which are studied separately. The exponential convergence is proved directly accompanied with the existence and uniqueness of the equilibrium point to the consider systems. Combining with the generalized ∞-norm and Cauchy convergence property in the quaternion field, some sufficient conditions to guarantee the stability are established without using any Lyapunov–Krasovskii functional and linear matrix inequality. Finally, a numerical example is given to demonstrate the effectiveness of the results.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>28753445</pmid><doi>10.1016/j.neunet.2017.06.014</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2017-10, Vol.94, p.55-66
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_1924604366
source MEDLINE; Elsevier ScienceDirect Journals
subjects Asynchronous time delay
Global exponential stability
Linear matrix inequality
Neural Networks (Computer)
Quaternion-valued neural network
Time Factors
title Decomposition approach to the stability of recurrent neural networks with asynchronous time delays in quaternion field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T14%3A47%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decomposition%20approach%20to%20the%20stability%20of%20recurrent%20neural%20networks%20with%20asynchronous%20time%20delays%20in%20quaternion%20field&rft.jtitle=Neural%20networks&rft.au=Zhang,%20Dandan&rft.date=2017-10&rft.volume=94&rft.spage=55&rft.epage=66&rft.pages=55-66&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2017.06.014&rft_dat=%3Cproquest_cross%3E1924604366%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1924604366&rft_id=info:pmid/28753445&rft_els_id=S0893608017301508&rfr_iscdi=true