Decomposition approach to the stability of recurrent neural networks with asynchronous time delays in quaternion field

In this paper, the global exponential stability for recurrent neural networks (QVNNs) with asynchronous time delays is investigated in quaternion field. Due to the non-commutativity of quaternion multiplication resulting from Hamilton rules: ij=−ji=k, jk=−kj=i, ki=−ik=j, ijk=i2=j2=k2=−1, the QVNN is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2017-10, Vol.94, p.55-66
Hauptverfasser: Zhang, Dandan, Kou, Kit Ian, Liu, Yang, Cao, Jinde
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the global exponential stability for recurrent neural networks (QVNNs) with asynchronous time delays is investigated in quaternion field. Due to the non-commutativity of quaternion multiplication resulting from Hamilton rules: ij=−ji=k, jk=−kj=i, ki=−ik=j, ijk=i2=j2=k2=−1, the QVNN is decomposed into four real-valued systems, which are studied separately. The exponential convergence is proved directly accompanied with the existence and uniqueness of the equilibrium point to the consider systems. Combining with the generalized ∞-norm and Cauchy convergence property in the quaternion field, some sufficient conditions to guarantee the stability are established without using any Lyapunov–Krasovskii functional and linear matrix inequality. Finally, a numerical example is given to demonstrate the effectiveness of the results.
ISSN:0893-6080
1879-2782
DOI:10.1016/j.neunet.2017.06.014