Competitive adsorption of Pb(II), Cd(II) and Cu(II) onto chitosan-pyromellitic dianhydride modified biochar

[Display omitted] In this work, a novel engineered biochar prepared through modification with chitosan and pyromellitic dianhydride (PMDA) was investigated as an adsorbent for the removal of heavy metal ions from single metal and mixed-metal solutions (Cd, Cu and Pb). Characterization experiments wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2017-11, Vol.506, p.355-364
Hauptverfasser: Deng, Jiaqin, Liu, Yunguo, Liu, Shaobo, Zeng, Guangming, Tan, Xiaofei, Huang, Binyan, Tang, Xiaojun, Wang, Shengfan, Hua, Quan, Yan, Zhili
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] In this work, a novel engineered biochar prepared through modification with chitosan and pyromellitic dianhydride (PMDA) was investigated as an adsorbent for the removal of heavy metal ions from single metal and mixed-metal solutions (Cd, Cu and Pb). Characterization experiments with FTIR and XPS suggested that the novel modified biochar had more surface functional groups compare to the pristine biochar. Adsorption experiments indicated that the initial pH of the solution influenced the ability of biochars to adsorb heavy metals in single- and multi-metal systems. Moreover, the chitosan-PMDA modified biochar had strong selective adsorption of Cu(II). Mechanism studies showed that chemisorption was the major mechanism for heavy metal removal by the chitosan-PMDA modified biochar. Furthermore, the types of effective functional group for these heavy metal removal were different. The NCO group played a dominant role in the process of Pb(II) removal, while several N-containing functional groups and CC groups participated in the adsorption of Cd(II). The novel engineered biochar had selective adsorption capacity for copper due to the N-containing functional groups, meanwhile abundant carbonyl groups also participated in the removal of copper, and may reduce Cu(II) to Cu(I).
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2017.07.069