Global Mittag-Leffler stability analysis of fractional-order impulsive neural networks with one-side Lipschitz condition

This paper is concerned with the stability analysis issue of fractional-order impulsive neural networks. Under the one-side Lipschitz condition or the linear growth condition of activation function, the existence of solution is analyzed respectively. In addition, the existence, uniqueness and global...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2017-10, Vol.94, p.67-75
Hauptverfasser: Zhang, Xinxin, Niu, Peifeng, Ma, Yunpeng, Wei, Yanqiao, Li, Guoqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is concerned with the stability analysis issue of fractional-order impulsive neural networks. Under the one-side Lipschitz condition or the linear growth condition of activation function, the existence of solution is analyzed respectively. In addition, the existence, uniqueness and global Mittag-Leffler stability of equilibrium point of the fractional-order impulsive neural networks with one-side Lipschitz condition are investigated by the means of contraction mapping principle and Lyapunov direct method. Finally, an example with numerical simulation is given to illustrate the validity and feasibility of the proposed results.
ISSN:0893-6080
1879-2782
DOI:10.1016/j.neunet.2017.06.010