Variable silicon accumulation in plants affects terrestrial carbon cycling by controlling lignin synthesis

Current climate and land‐use changes affect regional and global cycles of silicon (Si), with yet uncertain consequences for ecosystems. The key role of Si in marine ecology by controlling algae growth is well recognized but research on terrestrial ecosystems neglected Si since not considered an esse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global change biology 2018-01, Vol.24 (1), p.e183-e189
Hauptverfasser: Klotzbücher, Thimo, Klotzbücher, Anika, Kaiser, Klaus, Vetterlein, Doris, Jahn, Reinhold, Mikutta, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Current climate and land‐use changes affect regional and global cycles of silicon (Si), with yet uncertain consequences for ecosystems. The key role of Si in marine ecology by controlling algae growth is well recognized but research on terrestrial ecosystems neglected Si since not considered an essential plant nutrient. However, grasses and various other plants accumulate large amounts of Si, and recently it has been hypothesized that incorporation of Si as a structural plant component may substitute for the energetically more expensive biosynthesis of lignin. Herein, we provide evidence supporting this hypothesis. We demonstrate that in straw of rice (Oryza sativa) deriving from a large geographic gradient across South‐East Asia, the Si concentrations (ranging from 1.6% to 10.7%) are negatively related to the concentrations of carbon (31.3% to 42.5%) and lignin‐derived phenols (32 to 102 mg/g carbon). Less lignin may explain results of previous studies that Si‐rich straw decomposes faster. Hence, Si seems a significant but hardly recognized factor in organic carbon cycling through grasslands and other ecosystems dominated by Si‐accumulating plants. The key role of silicon in marine ecology by controlling algae growth is well recognized but research on terrestrial ecosystems neglected Si since not considered an essential plant nutrient. However, many plants accumulate large amounts of Si, and recently it has been hypothesized that incorporation of Si as a structural component may substitute for the energetically more expensive biosynthesis of lignin. Herein, we provide evidence supporting this hypothesis. We demonstrate that in rice straw deriving from a large geographic gradient across South‐East Asia, the Si concentrations are negatively related to the concentrations of carbon and lignin‐derived phenols. Our data offer an explanation for previous findings of faster decomposition of Si‐rich rice straw as lignin regulates plant litter decomposition rates. Hence, Si seems a significant but hardly recognized factor in carbon cycling through ecosystems dominated by grass species and/or other Si‐accumulating plants.
ISSN:1354-1013
1365-2486
DOI:10.1111/gcb.13845