Octreotide Abolishes the Acute Decrease in Bone Turnover in Response to Oral Glucose

Feeding or oral intake of glucose results in an acute suppression of bone turnover. This does not appear to be mediated by insulin. Several gastrointestinal hormones modulate bone turnover in vitro and may mediate this response. We examined whether inhibiting the production of gastrointestinal hormo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of clinical endocrinology and metabolism 2003-10, Vol.88 (10), p.4867-4873
Hauptverfasser: Clowes, Jackie A., Allen, Heather C., Prentis, Donna M., Eastell, Richard, Blumsohn, Aubrey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Feeding or oral intake of glucose results in an acute suppression of bone turnover. This does not appear to be mediated by insulin. Several gastrointestinal hormones modulate bone turnover in vitro and may mediate this response. We examined whether inhibiting the production of gastrointestinal hormones using octreotide could block glucose-mediated suppression of bone turnover. Fifteen subjects were each studied on four occasions in a randomized, single-blind, crossover study after receiving 1) oral placebo, iv saline; 2) oral glucose, iv saline; 3) oral glucose, iv octreotide; or 4) iv octreotide alone. We measured serum C-terminal telopeptide of type I collagen, urinary N-terminal telopeptide of type I collagen, osteocalcin, procollagen type I N-terminal propeptide, PTH, insulin, ionized calcium, and glucose over 4 h. All bone turnover markers decreased significantly after oral glucose (P < 0.001). At 120 min serum C-terminal telopeptide decreased by 45 ± 2%, urinary N-terminal telopeptide by 31 ± 7%, osteocalcin by 16 ± 1%, and procollagen type I N-terminal propeptide by 8 ± 1%. There was no significant decrease in bone turnover in response to oral glucose during octreotide infusion. Octreotide alone resulted in a significant increase in all bone turnover markers (P < 0.05) and PTH (P < 0.01). We conclude that octreotide completely abolishes the bone turnover response to glucose intake and increases PTH secretion. The apparent bone turnover response to feeding is probably mediated by an octreotide-inhibitable endocrine factor.
ISSN:0021-972X
1945-7197
DOI:10.1210/jc.2002-021447