Metal Binding Asp-120 in Metallo-β-lactamase L1 from Stenotrophomonas maltophilia Plays a Crucial Role in Catalysis
Metallo-β-lactamase L1 from Stenotrophomonas maltophilia is a dinuclear Zn(II) enzyme that contains a metal-binding aspartic acid in a position to potentially play an important role in catalysis. The presence of this metal-binding aspartic acid appears to be common to most dinuclear, metal-containin...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2004-01, Vol.279 (2), p.920-927 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Metallo-β-lactamase L1 from Stenotrophomonas maltophilia is a dinuclear Zn(II) enzyme that contains a metal-binding aspartic acid in a position to potentially play an important role in catalysis. The presence of this metal-binding aspartic acid appears to be common to most dinuclear, metal-containing, hydrolytic enzymes; particularly those with a β-lactamase fold. In an effort to probe the catalytic and metal-binding role of Asp-120 in L1, three site-directed mutants (D120C, D120N, and D120S) were prepared and characterized using metal analyses, circular dichroism spectroscopy, and presteady-state and steady-state kinetics. The D120C, D120N, and D120S mutants were shown to bind 1.6 ± 0.2, 1.8 ± 0.2, and 1.1 ± 0.2 mol of Zn(II) per monomer, respectively. The mutants exhibited 10- to 1000-fold drops in kcat values as compared with wild-type L1, and a general trend of activity, wild-type > D120N > D120C and D120S, was observed for all substrates tested. Solvent isotope and pH dependence studies indicate one or more protons in flight, with pKa values outside the range of pH 5–10 (except D120N), during a rate-limiting step for all the enzymes. These data demonstrate that Asp-120 is crucial for L1 to bind its full complement of Zn(II) and subsequently for proper substrate binding to the enzyme. This work also confirms that Asp-120 plays a significant role in catalysis, presumably via hydrogen bonding with water, assisting in formation of the bridging hydroxide/water, and a rate-limiting proton transfer in the hydrolysis reaction. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M309852200 |