Dicarboximide resistance in field isolates of Alternaria alternata is mediated by a mutation in a two-component histidine kinase gene

Isolates of Alternaria alternata collected from a field site which had previously been treated with the dicarboximide fungicide iprodione were found to demonstrate a high level of resistance to iprodione and the phenylpyrrole fungicide, fludioxonil in plate assays. In order to determine the genetic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fungal genetics and biology 2004, Vol.41 (1), p.102-108
Hauptverfasser: Dry, Ian B, Yuan, Khor H, Hutton, Don G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Isolates of Alternaria alternata collected from a field site which had previously been treated with the dicarboximide fungicide iprodione were found to demonstrate a high level of resistance to iprodione and the phenylpyrrole fungicide, fludioxonil in plate assays. In order to determine the genetic basis for this fungicide resistance a partial length clone of a two-component histidine kinase (HK) was isolated from genomic DNA of a fungicide-sensitive A. alternata isolate using degenerate primers by PCR. Analysis of the AaHK1 gene structure indicates the presence of six 90 amino acid repeat domains upstream of a kinase domain as found in the homologous HK genes from other fungal species. Comparison of nucleic acid sequences from the fungicide-sensitive and fungicide-resistant A. alternata isolates confirmed the presence of mutations leading to premature termination of the translated HK protein. The possible role of the two-component HK in the development of dicarboximide resistance in A. alternata is discussed.
ISSN:1087-1845
1096-0937
DOI:10.1016/j.fgb.2003.09.002