Studies on Substrate Recognition by the Budding Yeast Separase

Sister chromatid cohesion is resolved at anaphase onset when separase, a site-specific protease, cleaves the Scc1 subunit of the chromosomal cohesin complex that is responsible for holding sister chromatids together. This mechanism to initiate anaphase is conserved in eukaryotes from budding yeast t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2004-01, Vol.279 (2), p.1191-1196
Hauptverfasser: Sullivan, Matt, Hornig, Nadine C.D., Porstmann, Thomas, Uhlmann, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sister chromatid cohesion is resolved at anaphase onset when separase, a site-specific protease, cleaves the Scc1 subunit of the chromosomal cohesin complex that is responsible for holding sister chromatids together. This mechanism to initiate anaphase is conserved in eukaryotes from budding yeast to man. Budding yeast separase recognizes and cleaves two conserved peptide motifs within Scc1. In addition, separase cleaves a similar motif in the kinetochore and spindle protein Slk19. Separase may cleave further substrate proteins to orchestrate multiple cellular events that take place during anaphase. To investigate substrate recognition by budding yeast separase we analyzed the sequence requirements at one of the Scc1 cleavage site motifs by systematic mutagenesis. We derived a cleavage site consensus motif (not(FKRWY))(ACFHILMPVWY)(DE)X(AGSV)R/X. This motif is found in 1,139 of 5,889 predicted yeast proteins. We analyzed 28 candidate proteins containing this motif as well as 35 proteins that contain a core (DE)XXR motif. We could so far not confirm new separase substrates, but we have uncovered other forms of mitotic regulation of some of the proteins. We studied whether determinants other than the cleavage site motif mediate separase-substrate interaction. When the separase active site was occupied with a peptide inhibitor covering the cleavage site motif, separase still efficiently interacted with its substrate Scc1. This suggests that separase recognizes both a cleavage site consensus sequence as well as features outside the cleavage site.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M309761200