Proteins in microbial synthesis of selenium nanoparticles

Biogenic formation of nano-sized particles composed of various materials (in particular, selenium) by live microorganisms is widespread in nature. This phenomenon has been increasingly attracting the attention of researchers over the last decade not only owing to a range of diverse applications of s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Talanta (Oxford) 2017-11, Vol.174, p.539-547
Hauptverfasser: Tugarova, Anna V., Kamnev, Alexander A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biogenic formation of nano-sized particles composed of various materials (in particular, selenium) by live microorganisms is widespread in nature. This phenomenon has been increasingly attracting the attention of researchers over the last decade not only owing to a range of diverse applications of such nanoparticles (NPs) in nanobiotechnology, but also because of the specificity of methodologies and mechanisms of NPs formation related to “green synthesis”. In this mini-review, recent data are discussed on the multifaceted role of proteins in the processes of microbial reduction of selenium oxyanions and the formation of Se NPs. Besides the involvement of proteins in reducing selenites and selenates, their participation in the microbially driven growth and stabilisation of Se NPs is analysed, which results in the formation of unique nanostructured materials differing from those obtained chemically. This mini-review is thus focussed on proteins involved in microbial synthesis of Se NPs and on instrumental analysis of these processes and their products (biogenic nanostructured selenium particles functionalised by a surface-capping layer of various biomacromolecules). [Display omitted] •A review of proteomics related to microbial synthesis of Se nanoparticles is given.•Enzymes and thiols participating in selenium oxyanion reduction are discussed.•Known mechanisms of microbial synthesis of selenium nanoparticles are reviewed.•Proteinaceous components of biogenic Se nanoparticles capping layers are considered.
ISSN:0039-9140
1873-3573
DOI:10.1016/j.talanta.2017.06.013