Origami and Kirigami Nanocomposites

The arts of origami and kirigami inspired numerous examples of macroscale hierarchical structures with high degree of reconfigurability and multiple functionalities. Extension of kirigami and origami patterning to micro-, meso-, and nanoscales enabled production of nanocomposites with unusual combin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2017-08, Vol.11 (8), p.7587-7599
Hauptverfasser: Xu, Lizhi, Shyu, Terry C, Kotov, Nicholas A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The arts of origami and kirigami inspired numerous examples of macroscale hierarchical structures with high degree of reconfigurability and multiple functionalities. Extension of kirigami and origami patterning to micro-, meso-, and nanoscales enabled production of nanocomposites with unusual combination of properties, transitioning these art forms to the toolbox of materials design. Various subtractive and additive fabrication techniques applicable to nanocomposites and out-of-plane deformation of patterns enable a technological framework to negotiate often contradictory structural requirements for materials properties. Additionally, the long-searched possibility of patterned composites/parts with highly predictable set of properties/functions emerged. In this review, we discuss foldable/stretchable composites with designed mechanical properties, as exemplified by the negative Poisson’s ratio, as well as optical and electrical properties, as exemplified by the sheet conductance, photovoltage generation, and light diffraction. Reconfiguration achieved by extrinsic forces and/or intrinsic stresses enables a wide spectrum of technological applications including miniaturized biomedical tools, soft robotics, adaptive optics, and energy systems, extending the limits of both materials engineering concepts and technological innovation.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.7b03287