Bioinspired and Biomimetic AgNPs/Gentamicin-Embedded Silk Fibroin Coatings for Robust Antibacterial and Osteogenetic Applications

With the progressively increasing demand for orthopedic Ti implants, the balance between two primary complications restricting implant applications is needed to be solved: the lack of bone tissue integration and biomedical device-associated infections (BAI), where emergence of multiresistance bacter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2017-08, Vol.9 (31), p.25830-25846
Hauptverfasser: Zhou, Wenhao, Jia, Zhaojun, Xiong, Pan, Yan, Jianglong, Li, Yangyang, Li, Ming, Cheng, Yan, Zheng, Yufeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the progressively increasing demand for orthopedic Ti implants, the balance between two primary complications restricting implant applications is needed to be solved: the lack of bone tissue integration and biomedical device-associated infections (BAI), where emergence of multiresistance bacteria make it worse. Notably, a combination of silver nanoparticles (AgNPs) and a kind of antibiotic can synergistically inhibit bacterial growth, where a low concentration of AgNPs has been confirmed to promote the proliferation and osteogenesis of osteoblasts. In this work, we built AgNPs/gentamicin (Gen)-embedded silk fibroin (SF)-based biomimetic coatings on orthopedic titanium by a facile dipping–drying circular process and with the assistance of polydopamine (PD). Ag+ was reduced to AgNPs by SF under ultraviolet (UV) irradiation, and then they were detected by transmission electron microscope (TEM) images and UV–visible (UV–vis) analyses. Intriguingly, the addition of Gen highly improved the reduction efficiency of Ag+. The antibacterial efficiency of SF-based coatings was examined by challenging them with pathogenic Staphylococcus aureus (S. aureus) bacteria which produced biofilms, and consequently, we found that low concentration loading, durable release of Ag+ (28 days), and 10-fold improvement of antibacterial efficiency were achieved for our novel AgNPs- and Gen-embeded silk fibroin coatings. In bacteria and a cells cocultured system, AgNPs/Gen-embedded coatings strongly inhibited adhesion and proliferation of S. aureus, simultaneously improving cell adhesion and growth. To investigate cytocompatibility and osteogenic potential, different coatings were cultured with MC3T3 cells; AgNPs/Gen-embedded coatings showed generally acceptable biocompatibility (cell adhesion, proliferation, and viability) and accelerated osteoblast maturation (alkaline phosphatase production, matrix secretion, and calcification). Expectantly, this novel biofunctional coating will have promising applications in orthopedic and dental titanium implants thanks to its excellently antibacterial, biocompatible, and osteogenic activities.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.7b06757