Oxidative stress in liver and brain of the hatchling chicken ( Gallus domesticus) following in ovo injection with TCDD
2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) was injected into chicken eggs prior to incubation to study possible mechanisms of toxicity and teratogenicity. One of the suggested mechanisms of teratogenicity is oxidative stress. Eggs were injected simultaneously with TCDD and cotreatment compounds in...
Gespeichert in:
Veröffentlicht in: | Comparative biochemistry and physiology. Toxicology & pharmacology 2003-09, Vol.136 (1), p.29-45 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 2,3,7,8-tetrachlorodibenzo-
p-dioxin (TCDD) was injected into chicken eggs prior to incubation to study possible mechanisms of toxicity and teratogenicity. One of the suggested mechanisms of teratogenicity is oxidative stress. Eggs were injected simultaneously with TCDD and cotreatment compounds in an attempt to prevent oxidative stress or to block cytochrome P450 activity. Indicators of oxidative stress were assessed in livers and brains of hatchling chicks. In ovo, exposure to TCDD caused significant effects on indicators of oxidative stress in liver, but not in the brain of the hatchling chicks. TCDD did not significantly affect superoxide production. In liver, TCDD treatment caused a decrease in glutathione content and glutathione peroxidase activity and an increase in the ratio of oxidized to reduced glutathione. TCDD increased the susceptibility to lipid peroxidation and oxidative DNA damage in liver. Administration of the antioxidants vitamin E and vitamin A provided partial protection against TCDD-induced oxidative stress in liver. The lack of effect of TCDD in chicken brain could be due to the low cytochrome P4501A activity in this tissue and little accumulation of TCDD in brain compared to liver. Phenytoin, a known inducer of oxidative stress, caused a decrease in glutathione content and an increase in susceptibility to lipid peroxidation in both liver and brain and increased oxidative DNA damage in brain. Responsiveness varied among individual animals, but measures of the oxidative stress were correlated. |
---|---|
ISSN: | 1532-0456 1878-1659 |
DOI: | 10.1016/S1532-0456(03)00167-4 |