A Spring-Loaded State of NusG in Its Functional Cycle Is Suggested by X-ray Crystallography and Supported by Site-Directed Mutants
Transcription factor NusG is present in all prokaryotes, and orthologous proteins have also been identified in yeast and humans. NusG contains a 27-residue KOW motif, found in ribosomal protein L24 where it interacts with rRNA. NusG in Escherichia coli (EcNusG) is an essential protein and functions...
Gespeichert in:
Veröffentlicht in: | Biochemistry 2003-03, Vol.42 (8), p.2275-2281 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Transcription factor NusG is present in all prokaryotes, and orthologous proteins have also been identified in yeast and humans. NusG contains a 27-residue KOW motif, found in ribosomal protein L24 where it interacts with rRNA. NusG in Escherichia coli (EcNusG) is an essential protein and functions as a regulator of Rho-dependent transcription termination, phage λ N and rRNA transcription antitermination, and phage HK022 Nun termination. Relative to EcNusG, Aquifex aeolicus NusG (AaNusG) and several other bacterial NusG proteins contain a variable insertion sequence of ∼70 residues in the central region of the molecule. Recently, crystal structures of AaNusG in space groups P21 and I222 have been reported; the authors conclude that there are no conserved dimers among the contacting molecules in the crystals [Steiner, T., Kaiser, J. T., Marinkovic, S., Huber, R., and Wahl, M. C. (2002) EMBO J. 21, 4641−4653]. We have independently determined the structures of AaNusG also in two crystal forms, P21 and C2221, and surprisingly found that AaNusG molecules form domain-swapped dimers in both crystals. Additionally, polymerization is also observed in the P21 crystal. A unique “ball-and-socket” junction dominates the intermolecular interactions within both oligomers. We believe that this interaction is a clue to the function of the molecule and propose a spring-loaded state in the functional cycle of NusG. The importance of the ball-and-socket junction for the function of NusG is supported by the functional analysis of site-directed mutants. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi0272508 |