Inhaled powder formulation of naked siRNA using spray drying technology with l-leucine as dispersion enhancer
[Display omitted] Pulmonary delivery of short interfering RNA (siRNA) has been widely studied in both animal and clinical studies to treat various respiratory diseases by gene silencing through RNA interference. Some of these studies showed that the administration of naked siRNA (without the use of...
Gespeichert in:
Veröffentlicht in: | International journal of pharmaceutics 2017-09, Vol.530 (1-2), p.40-52 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Pulmonary delivery of short interfering RNA (siRNA) has been widely studied in both animal and clinical studies to treat various respiratory diseases by gene silencing through RNA interference. Some of these studies showed that the administration of naked siRNA (without the use of any delivery vectors) could achieve satisfactory gene silencing effect, a unique feature to pulmonary delivery. Liquid aerosols were mostly used with very limited studies on the use of powder aerosols for siRNA. In this study, siRNA was co-spray dried with mannitol and l-leucine, the latter being a dispersion enhancer. To the best of our knowledge, this is the first time that siRNA in its naked form was formulated into an inhalable dry powder using spray drying technology. The aerosol performance of the powder was evaluated by Next Generation Impactor (NGI). The presence of l-leucine in the formulation could improve the aerosolization of siRNA-containing powders. Results from the X-ray photoelectron spectroscopy (XPS) suggested that l-leucine was enriched on the particle surface and promote powder dispersion. Among the different siRNA formulations being examined, the one that contained 50% w/w of l-leucine exhibited the best aerodynamic performance, with a high emitted fraction (EF) of around 80% and a modest fine particle fraction (FPF) of 45%. Importantly, the integrity of siRNA was successfully retained as evaluated by gel retardation assay and high performance liquid chromatography (HPLC). |
---|---|
ISSN: | 0378-5173 1873-3476 |
DOI: | 10.1016/j.ijpharm.2017.07.013 |