Identification, characterization and expression analysis of TLR5 in the mucosal tissues of turbot (Scophthalmus maximus L.) following bacterial challenge
TLRs (Toll-like receptors) are very important pathogen pattern recognition receptors, which control the host immune responses against pathogens through recognition of molecular patterns specific to microorganisms. In this regard, investigation of the turbot TLRs could help to understand the immune r...
Gespeichert in:
Veröffentlicht in: | Fish & shellfish immunology 2017-09, Vol.68, p.272-279 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | TLRs (Toll-like receptors) are very important pathogen pattern recognition receptors, which control the host immune responses against pathogens through recognition of molecular patterns specific to microorganisms. In this regard, investigation of the turbot TLRs could help to understand the immune responses for pathogen recognition. Here, transcripts of two TLR5 (TLR5a and TLR5b) were captured, and their protein structures were also predicted. Meanwhile, we characterized their expression patterns with emphasis on mucosal barriers following different bacterial infection. The phylogenetic analysis revealed the turbot TLR5 genes showed the closest relationship to Paralichthys olivaceus. These two TLR5 genes were ubiquitously expressed in healthy tissues although expression levels varied among the tested tissues. In addition, the two copies of turbot TLR5 showed different expression patterns after bacterial infections. After Vibrio anguillarum infection, TLR5a was generally up-regulated in intestine and skin while down-regulated in gill, while TLR5b showed a general down-regulation in mucosal tissues. After Streptococcus iniae infection, the TLR5a was down-regulated at 2 h while generally up-regulated after 4 h in mucosal tissues. Interestingly, the TLR5b was up-regulated in intestine while down-regulated in skin and gill after Streptococcus iniae infection. These findings suggested a possible irreplaceable role of TLR5 in the immune responses to the infections of a broad range of pathogens that include Gram-negative and Gram-positive bacteria. Future studies should apply the bacteriological and immune-histochemical techniques to study the main sites on the mucosal tissue for bacteria entry and identify the ligand specificity of the turbot TLRs after challenge.
•TLR5 genes are homologous to their counterparts in other vertebrates.•TLR5 genes were ubiquitously expressed in turbot tissues.•TLR5 genes showed different expression patterns following different bacterial challenge. |
---|---|
ISSN: | 1050-4648 1095-9947 |
DOI: | 10.1016/j.fsi.2017.07.021 |