Biocatalysis for the synthesis of pharmaceuticals and pharmaceutical intermediates

[Display omitted] Biocatalysis has been increasingly used for pharmaceutical synthesis in an effort to make manufacturing processes greener and more sustainable. Biocatalysts that possess excellent activity, specificity, thermostability and solvent-tolerance are highly sought after to meet the requi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioorganic & medicinal chemistry 2018-04, Vol.26 (7), p.1275-1284
Hauptverfasser: Sun, Huihua, Zhang, Hongfang, Ang, Ee Lui, Zhao, Huimin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Biocatalysis has been increasingly used for pharmaceutical synthesis in an effort to make manufacturing processes greener and more sustainable. Biocatalysts that possess excellent activity, specificity, thermostability and solvent-tolerance are highly sought after to meet the requirements of practical applications. Generating biocatalysts with these specific properties can be achieved by either discovery of novel biocatalysts or protein engineering. Meanwhile, chemoenzymatic routes have also been designed and developed for pharmaceutical synthesis on an industrial scale. This review discusses the recent discoveries, engineering, and applications of biocatalysts for the synthesis of pharmaceuticals and pharmaceutical intermediates. Key classes of biocatalysts include reductases, oxidases, hydrolases, lyases, isomerases, and transaminases.
ISSN:0968-0896
1464-3391
DOI:10.1016/j.bmc.2017.06.043