Dll4 and Notch signalling couples sprouting angiogenesis and artery formation
Endothelial sprouting and proliferation are tightly coordinated processes mediating the formation of new blood vessels during physiological and pathological angiogenesis. Endothelial tip cells lead sprouts and are thought to suppress tip-like behaviour in adjacent stalk endothelial cells by activati...
Gespeichert in:
Veröffentlicht in: | Nature cell biology 2017-08, Vol.19 (8), p.915-927 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Endothelial sprouting and proliferation are tightly coordinated processes mediating the formation of new blood vessels during physiological and pathological angiogenesis. Endothelial tip cells lead sprouts and are thought to suppress tip-like behaviour in adjacent stalk endothelial cells by activating Notch. Here, we show with genetic experiments in postnatal mice that the level of active Notch signalling is more important than the direct Dll4-mediated cell–cell communication between endothelial cells. We identify endothelial expression of VEGF-A and of the chemokine receptor CXCR4 as key processes controlling Notch-dependent vessel growth. Surprisingly, genetic experiments targeting endothelial tip cells
in vivo
reveal that they retain their function without Dll4 and are also not replaced by adjacent, Dll4-positive cells. Instead, activation of Notch directs tip-derived endothelial cells into developing arteries and thereby establishes that Dll4–Notch signalling couples sprouting angiogenesis and artery formation.
Pitulescu
et al
. and Hasan
et al
. show that Dll4–Notch signalling in endothelial tip cells regulates angiogenesis through control of artery formation, linking sprouting angiogenesis and artery formation. |
---|---|
ISSN: | 1465-7392 1476-4679 |
DOI: | 10.1038/ncb3555 |