Habitat Use and Movements of Repatriated Wyoming Toads
We studied habitat use and movements of a repatriated population of federally endangered Wyoming toads (Bufo baxteri) after the breeding season at Mortenson Lake, Albany County, Wyoming, USA. We followed 8 adult toads using telemetry (n = 68 relocations) during periods of activity and observed 59 po...
Gespeichert in:
Veröffentlicht in: | The Journal of wildlife management 2003-04, Vol.67 (2), p.439-446 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We studied habitat use and movements of a repatriated population of federally endangered Wyoming toads (Bufo baxteri) after the breeding season at Mortenson Lake, Albany County, Wyoming, USA. We followed 8 adult toads using telemetry (n = 68 relocations) during periods of activity and observed 59 post-metamorphic juvenile toads (n = 59 locations). Adult toads used habitat with a greater mean vegetation canopy cover (mean = 52.6%) than juveniles (mean = 39.20%). We found adults farther from the shoreline (mean = 1.32 m) than juveniles (mean = 1.04 m). Substrates used by toads had a mean surface temperature of 20.31 °C for adults and 23.05 °C for juveniles. We found most adult and juvenile toads on saturated substrates. All adult toads sampled did not move outside of a 30 × 500 m area along the east-to-south shore where they were captured. Toads were active diurnally through the end of October. We found toads torpid at night. We compared our results to a similar study of the historic population and found that adult toads of the current population used denser vegetation than those of the historic population. Unlike many bufonids, terrestrial stages of the Wyoming toad appear to depend on saturated substrates. The best logistic regression predictors of adult and juvenile toad presence were surface temperature and distance to shore. Survey transects within the moist margin of the lake (≤10 m from water) and after substrates have reached temperatures ≥20 °C will likely yield more detections. |
---|---|
ISSN: | 0022-541X 1937-2817 |
DOI: | 10.2307/3802784 |