Oxidized Phospholipids Induce Expression of Human Heme Oxygenase-1 Involving Activation of cAMP-responsive Element-binding Protein
Heme oxygenase-1 (HO-1) catalyzes the rate-limiting step in heme degradation, protects against oxidative stress, and shows potent anti-inflammatory effects. Oxidized phospholipids, which are generated during inflammation and apoptosis, modulate the inflammatory response by inducing the expression of...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2003-12, Vol.278 (51), p.51006-51014 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Heme oxygenase-1 (HO-1) catalyzes the rate-limiting step in heme degradation, protects against oxidative stress, and shows potent anti-inflammatory effects. Oxidized phospholipids, which are generated during inflammation and apoptosis, modulate the inflammatory response by inducing the expression of several genes including HO-1. Here we investigated the signaling pathways and transcriptional events involved in the induction of HO-1 gene expression by oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) in human umbilical vein endothelial cells. OxPAPC up-regulated HO-1 mRNA and protein in a time- and concentration-dependent manner, whereas pro-inflammatory agents like TNF-α and lipopolysaccharide did not significantly induce HO-1 expression in human umbilical vein endothelial cells. Signaling pathways involved in the OxPAPC-mediated HO-1 induction included protein kinases A and C, as well as the mitogen-activated protein kinases p38 and ERK. The cAMP-responsive element-binding protein (CREB) was phosphorylated via these pathways in response to OxPAPC treatment and expression of a dominant-negative mutant of CREB inhibited OxPAPC-induced activity of a human heme oxygenase-1 promoter-driven luciferase reporter construct. We identified a cAMP-responsive element and a Maf recognition element to be involved in the transcriptional activation of the HO-1 promoter by OxPAPC. In gel shift assays we observed binding of CREB to the cAMP-responsive element after OxPAPC treatment. Induction of HO-1 expression by lipid oxidation products via CREB may represent a feedback mechanism to limit inflammation and associated tissue damage. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M304103200 |