Importance of the Gulf of Aqaba for the formation of bottom water in the Red Sea

Conductivity‐temperature‐depth tracer and direct current measurements collected in the northern Red Sea in February and March 1999 are used to study the formation of deep and bottom water in that region. Historical data showed that open ocean convection in the Red Sea can contribute to the renewal o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research. C. Oceans 2002-08, Vol.107 (C8), p.22-1-22-18
Hauptverfasser: Plähn, Olaf, Baschek, Burkard, Badewien, Thomas H., Walter, Maren, Rhein, Monika
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conductivity‐temperature‐depth tracer and direct current measurements collected in the northern Red Sea in February and March 1999 are used to study the formation of deep and bottom water in that region. Historical data showed that open ocean convection in the Red Sea can contribute to the renewal of intermediate or deep water but cannot ventilate the bottom water. The observations in 1999 showed no evidence for open ocean convection in the Red Sea during the winter 1998/1999. The overflow water from the Gulf of Aqaba was found to be the densest water mass in the northern Red Sea. An anomaly of the chlorofluorocarbon component CFC‐12 observed in the Gulf of Aqaba and at the bottom of the Red Sea suggests a strong contribution of this water mass to the renewal of bottom water in the Red Sea. The CFC data obtained during this cruise are the first available for this region. Because of the new signal, it is possible for the first time to subdivide the deep water column into deep and bottom water in the northern Red Sea. The available data set also shows that the outflow water from the Gulf of Suez is not dense enough to reach down to the bottom of the Red Sea but was found about 250 m above the bottom.
ISSN:0148-0227
2169-9275
2156-2202
2169-9291
DOI:10.1029/2000JC000342