Electromagnetic bias estimation using in situ and satellite data: 2. A nonparametric approach

For the most recent satellite altimeter (Jason‐1), the largest single error budget contribution is the electromagnetic (EM) bias. Nonparametric models have been proposed to reduce the variability of EM bias estimates. In previous work, nonparametric models have been estimated using satellite crossov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research. C. Oceans 2003-02, Vol.108 (C2), p.23.1-n/a
Hauptverfasser: Millet, Floyd W., Arnold, David V., Gaspar, Philippe, Warnick, Karl F., Smith, Justin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For the most recent satellite altimeter (Jason‐1), the largest single error budget contribution is the electromagnetic (EM) bias. Nonparametric models have been proposed to reduce the variability of EM bias estimates. In previous work, nonparametric models have been estimated using satellite crossover differences. Using tower data, we show that nonparametric models using wind speed and significant wave height provide some improvement over parametric models. In support of Part I of this paper [Millet et al., 2003], inclusion of the RMS long wave slope improves nonparametric EM bias estimation error values by over 50%. In addition, nonparametric models reduce the historical discrepancy between satellite and tower EM bias measurements.
ISSN:0148-0227
2169-9275
2156-2202
2169-9291
DOI:10.1029/2001JC001144