Assessing the decontamination efficiency of a three-component flocculating system in the treatment of oilfield-produced water
Produced water is a complex mixture of oil, water, dissolved solids, and suspended solids. It represents the largest volume of waste associated with the oil and gas industry, and its management is a costly aspect of oil recovery. Therefore, the development of effective treatment technologies for pro...
Gespeichert in:
Veröffentlicht in: | Water research (Oxford) 2014-04, Vol.52, p.122-130 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Produced water is a complex mixture of oil, water, dissolved solids, and suspended solids. It represents the largest volume of waste associated with the oil and gas industry, and its management is a costly aspect of oil recovery. Therefore, the development of effective treatment technologies for produced water is essential from both ecological and economic standpoints. We have developed a sensitive, fluorescence-based method to demonstrate the decontamination efficiency of a three-component polymeric flocculating system, the microencapsulating flocculating dispersion (MFD) technology. We have shown that the MFD technology can remove 90 ± 2% of the pyrene, a model wastewater contaminant, in a 0.4 ppm aqueous stock solution. The optimal flocculant concentrations used to remove pyrene was determined by fluorescence spectroscopy and zeta potential measurements. Under these conditions, flocculation and settling times were fast (i.e., |
---|---|
ISSN: | 0043-1354 1879-2448 |
DOI: | 10.1016/j.watres.2014.01.004 |