Comparisons of GM (1,1), and BPNN for predicting hourly particulate matter in Dali area of Taichung City, Taiwan
This paper represents the first study to compare seven types of first–order and one–variable grey differential equation model [abbreviated as GM (1, 1)] and back-propagation artificial neural network (BPNN) for predicting hourly particulate matter (PM) including PMio and PM2.5 concentrations in Dali...
Gespeichert in:
Veröffentlicht in: | Atmospheric pollution research 2015-07, Vol.6 (4), p.572-580 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 580 |
---|---|
container_issue | 4 |
container_start_page | 572 |
container_title | Atmospheric pollution research |
container_volume | 6 |
creator | Chen, Li Pai, Tzu-Yi |
description | This paper represents the first study to compare seven types of first–order and one–variable grey differential equation model [abbreviated as GM (1, 1)] and back-propagation artificial neural network (BPNN) for predicting hourly particulate matter (PM) including PMio and PM2.5 concentrations in Dali area of Taichung City, Taiwan. Their prediction performance was also compared. The results indicated that the minimum mean absolute percentage error (MAPE), mean squared error (MSE), and root mean squared error (RMSE) was 16.76%, 132.95, and 11.53, respectively for PM10 prediction. For PM2.5 prediction, the minimum MAPE, MSE, and RMSE value of 21.64%, 40.41, and 6.36, respectively could be achieved. All statistical values revealed that the predicting performance of GM (1, 1, x(0)), GM (1, 1, a), and GM (1, 1, b) outperformed other GM (1, 1) models. According to the results, it revealed that GM (1, 1) could predict the hourly PM variation precisely even comparing with BPNN. |
doi_str_mv | 10.5094/APR.2015.064 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1919956645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1309104215301884</els_id><sourcerecordid>1765945368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-e30c9294c47f4823ea6a63b9e8145fbb8f271b43e5d3319682532dde59acfd073</originalsourceid><addsrcrecordid>eNqFkU9LAzEQxRdRULQ3P0COFdqabP7s5qhVq6C1SD2HNDtrI9vNmmSVfntT6sGD4FxmBn7vwczLsnOCJxxLdnm1eJnkmPAJFuwgOyEUyzHBLD_8NR9ngxDecSoqeZHjk6ybuk2nvQ2uDcjVaPaEhmRELkZItxW6XsznqHYedR4qa6Jt39Da9b7ZoiSK1vSNjoA2OkbwyLboRjcWaQ9657XU1qz7JJnauB3t1i_dnmVHtW4CDH76afZ6d7uc3o8fn2cP06vHsaGliGOg2MhcMsOKmpU5BS20oCsJJWG8Xq3KOi_IilHgFaVEijLnNK8q4FKbusIFPc2Ge9_Ou48eQlQbGww0jW7B9UERSaTkQjD-P1oILhMnyoSO9qjxLgQPteq83Wi_VQSrXQwqxaB2MagUQ8LFHod06acFr4Kx0Jr0TA8mqsrZv4XfpGaJ4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765945368</pqid></control><display><type>article</type><title>Comparisons of GM (1,1), and BPNN for predicting hourly particulate matter in Dali area of Taichung City, Taiwan</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Chen, Li ; Pai, Tzu-Yi</creator><creatorcontrib>Chen, Li ; Pai, Tzu-Yi</creatorcontrib><description>This paper represents the first study to compare seven types of first–order and one–variable grey differential equation model [abbreviated as GM (1, 1)] and back-propagation artificial neural network (BPNN) for predicting hourly particulate matter (PM) including PMio and PM2.5 concentrations in Dali area of Taichung City, Taiwan. Their prediction performance was also compared. The results indicated that the minimum mean absolute percentage error (MAPE), mean squared error (MSE), and root mean squared error (RMSE) was 16.76%, 132.95, and 11.53, respectively for PM10 prediction. For PM2.5 prediction, the minimum MAPE, MSE, and RMSE value of 21.64%, 40.41, and 6.36, respectively could be achieved. All statistical values revealed that the predicting performance of GM (1, 1, x(0)), GM (1, 1, a), and GM (1, 1, b) outperformed other GM (1, 1) models. According to the results, it revealed that GM (1, 1) could predict the hourly PM variation precisely even comparing with BPNN.</description><identifier>ISSN: 1309-1042</identifier><identifier>EISSN: 1309-1042</identifier><identifier>DOI: 10.5094/APR.2015.064</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>back–propagation neural network ; GM (1, 1) ; Grey system theory ; hourly particulate matter</subject><ispartof>Atmospheric pollution research, 2015-07, Vol.6 (4), p.572-580</ispartof><rights>2015 Turkish National Committee for Air Pollution Research and Control (TUNCAP)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-e30c9294c47f4823ea6a63b9e8145fbb8f271b43e5d3319682532dde59acfd073</citedby><cites>FETCH-LOGICAL-c386t-e30c9294c47f4823ea6a63b9e8145fbb8f271b43e5d3319682532dde59acfd073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Pai, Tzu-Yi</creatorcontrib><title>Comparisons of GM (1,1), and BPNN for predicting hourly particulate matter in Dali area of Taichung City, Taiwan</title><title>Atmospheric pollution research</title><description>This paper represents the first study to compare seven types of first–order and one–variable grey differential equation model [abbreviated as GM (1, 1)] and back-propagation artificial neural network (BPNN) for predicting hourly particulate matter (PM) including PMio and PM2.5 concentrations in Dali area of Taichung City, Taiwan. Their prediction performance was also compared. The results indicated that the minimum mean absolute percentage error (MAPE), mean squared error (MSE), and root mean squared error (RMSE) was 16.76%, 132.95, and 11.53, respectively for PM10 prediction. For PM2.5 prediction, the minimum MAPE, MSE, and RMSE value of 21.64%, 40.41, and 6.36, respectively could be achieved. All statistical values revealed that the predicting performance of GM (1, 1, x(0)), GM (1, 1, a), and GM (1, 1, b) outperformed other GM (1, 1) models. According to the results, it revealed that GM (1, 1) could predict the hourly PM variation precisely even comparing with BPNN.</description><subject>back–propagation neural network</subject><subject>GM (1, 1)</subject><subject>Grey system theory</subject><subject>hourly particulate matter</subject><issn>1309-1042</issn><issn>1309-1042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkU9LAzEQxRdRULQ3P0COFdqabP7s5qhVq6C1SD2HNDtrI9vNmmSVfntT6sGD4FxmBn7vwczLsnOCJxxLdnm1eJnkmPAJFuwgOyEUyzHBLD_8NR9ngxDecSoqeZHjk6ybuk2nvQ2uDcjVaPaEhmRELkZItxW6XsznqHYedR4qa6Jt39Da9b7ZoiSK1vSNjoA2OkbwyLboRjcWaQ9657XU1qz7JJnauB3t1i_dnmVHtW4CDH76afZ6d7uc3o8fn2cP06vHsaGliGOg2MhcMsOKmpU5BS20oCsJJWG8Xq3KOi_IilHgFaVEijLnNK8q4FKbusIFPc2Ge9_Ou48eQlQbGww0jW7B9UERSaTkQjD-P1oILhMnyoSO9qjxLgQPteq83Wi_VQSrXQwqxaB2MagUQ8LFHod06acFr4Kx0Jr0TA8mqsrZv4XfpGaJ4g</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Chen, Li</creator><creator>Pai, Tzu-Yi</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TV</scope><scope>C1K</scope><scope>KL.</scope><scope>7QH</scope><scope>7TN</scope><scope>7UA</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20150701</creationdate><title>Comparisons of GM (1,1), and BPNN for predicting hourly particulate matter in Dali area of Taichung City, Taiwan</title><author>Chen, Li ; Pai, Tzu-Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-e30c9294c47f4823ea6a63b9e8145fbb8f271b43e5d3319682532dde59acfd073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>back–propagation neural network</topic><topic>GM (1, 1)</topic><topic>Grey system theory</topic><topic>hourly particulate matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Pai, Tzu-Yi</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aqualine</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Atmospheric pollution research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Li</au><au>Pai, Tzu-Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparisons of GM (1,1), and BPNN for predicting hourly particulate matter in Dali area of Taichung City, Taiwan</atitle><jtitle>Atmospheric pollution research</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>6</volume><issue>4</issue><spage>572</spage><epage>580</epage><pages>572-580</pages><issn>1309-1042</issn><eissn>1309-1042</eissn><abstract>This paper represents the first study to compare seven types of first–order and one–variable grey differential equation model [abbreviated as GM (1, 1)] and back-propagation artificial neural network (BPNN) for predicting hourly particulate matter (PM) including PMio and PM2.5 concentrations in Dali area of Taichung City, Taiwan. Their prediction performance was also compared. The results indicated that the minimum mean absolute percentage error (MAPE), mean squared error (MSE), and root mean squared error (RMSE) was 16.76%, 132.95, and 11.53, respectively for PM10 prediction. For PM2.5 prediction, the minimum MAPE, MSE, and RMSE value of 21.64%, 40.41, and 6.36, respectively could be achieved. All statistical values revealed that the predicting performance of GM (1, 1, x(0)), GM (1, 1, a), and GM (1, 1, b) outperformed other GM (1, 1) models. According to the results, it revealed that GM (1, 1) could predict the hourly PM variation precisely even comparing with BPNN.</abstract><pub>Elsevier B.V</pub><doi>10.5094/APR.2015.064</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1309-1042 |
ispartof | Atmospheric pollution research, 2015-07, Vol.6 (4), p.572-580 |
issn | 1309-1042 1309-1042 |
language | eng |
recordid | cdi_proquest_miscellaneous_1919956645 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | back–propagation neural network GM (1, 1) Grey system theory hourly particulate matter |
title | Comparisons of GM (1,1), and BPNN for predicting hourly particulate matter in Dali area of Taichung City, Taiwan |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A38%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparisons%20of%20GM%20(1,1),%20and%20BPNN%20for%20predicting%20hourly%20particulate%20matter%20in%20Dali%20area%20of%20Taichung%20City,%20Taiwan&rft.jtitle=Atmospheric%20pollution%20research&rft.au=Chen,%20Li&rft.date=2015-07-01&rft.volume=6&rft.issue=4&rft.spage=572&rft.epage=580&rft.pages=572-580&rft.issn=1309-1042&rft.eissn=1309-1042&rft_id=info:doi/10.5094/APR.2015.064&rft_dat=%3Cproquest_cross%3E1765945368%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1765945368&rft_id=info:pmid/&rft_els_id=S1309104215301884&rfr_iscdi=true |