Comparisons of GM (1,1), and BPNN for predicting hourly particulate matter in Dali area of Taichung City, Taiwan

This paper represents the first study to compare seven types of first–order and one–variable grey differential equation model [abbreviated as GM (1, 1)] and back-propagation artificial neural network (BPNN) for predicting hourly particulate matter (PM) including PMio and PM2.5 concentrations in Dali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric pollution research 2015-07, Vol.6 (4), p.572-580
Hauptverfasser: Chen, Li, Pai, Tzu-Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 580
container_issue 4
container_start_page 572
container_title Atmospheric pollution research
container_volume 6
creator Chen, Li
Pai, Tzu-Yi
description This paper represents the first study to compare seven types of first–order and one–variable grey differential equation model [abbreviated as GM (1, 1)] and back-propagation artificial neural network (BPNN) for predicting hourly particulate matter (PM) including PMio and PM2.5 concentrations in Dali area of Taichung City, Taiwan. Their prediction performance was also compared. The results indicated that the minimum mean absolute percentage error (MAPE), mean squared error (MSE), and root mean squared error (RMSE) was 16.76%, 132.95, and 11.53, respectively for PM10 prediction. For PM2.5 prediction, the minimum MAPE, MSE, and RMSE value of 21.64%, 40.41, and 6.36, respectively could be achieved. All statistical values revealed that the predicting performance of GM (1, 1, x(0)), GM (1, 1, a), and GM (1, 1, b) outperformed other GM (1, 1) models. According to the results, it revealed that GM (1, 1) could predict the hourly PM variation precisely even comparing with BPNN.
doi_str_mv 10.5094/APR.2015.064
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1919956645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1309104215301884</els_id><sourcerecordid>1765945368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-e30c9294c47f4823ea6a63b9e8145fbb8f271b43e5d3319682532dde59acfd073</originalsourceid><addsrcrecordid>eNqFkU9LAzEQxRdRULQ3P0COFdqabP7s5qhVq6C1SD2HNDtrI9vNmmSVfntT6sGD4FxmBn7vwczLsnOCJxxLdnm1eJnkmPAJFuwgOyEUyzHBLD_8NR9ngxDecSoqeZHjk6ybuk2nvQ2uDcjVaPaEhmRELkZItxW6XsznqHYedR4qa6Jt39Da9b7ZoiSK1vSNjoA2OkbwyLboRjcWaQ9657XU1qz7JJnauB3t1i_dnmVHtW4CDH76afZ6d7uc3o8fn2cP06vHsaGliGOg2MhcMsOKmpU5BS20oCsJJWG8Xq3KOi_IilHgFaVEijLnNK8q4FKbusIFPc2Ge9_Ou48eQlQbGww0jW7B9UERSaTkQjD-P1oILhMnyoSO9qjxLgQPteq83Wi_VQSrXQwqxaB2MagUQ8LFHod06acFr4Kx0Jr0TA8mqsrZv4XfpGaJ4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765945368</pqid></control><display><type>article</type><title>Comparisons of GM (1,1), and BPNN for predicting hourly particulate matter in Dali area of Taichung City, Taiwan</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Chen, Li ; Pai, Tzu-Yi</creator><creatorcontrib>Chen, Li ; Pai, Tzu-Yi</creatorcontrib><description>This paper represents the first study to compare seven types of first–order and one–variable grey differential equation model [abbreviated as GM (1, 1)] and back-propagation artificial neural network (BPNN) for predicting hourly particulate matter (PM) including PMio and PM2.5 concentrations in Dali area of Taichung City, Taiwan. Their prediction performance was also compared. The results indicated that the minimum mean absolute percentage error (MAPE), mean squared error (MSE), and root mean squared error (RMSE) was 16.76%, 132.95, and 11.53, respectively for PM10 prediction. For PM2.5 prediction, the minimum MAPE, MSE, and RMSE value of 21.64%, 40.41, and 6.36, respectively could be achieved. All statistical values revealed that the predicting performance of GM (1, 1, x(0)), GM (1, 1, a), and GM (1, 1, b) outperformed other GM (1, 1) models. According to the results, it revealed that GM (1, 1) could predict the hourly PM variation precisely even comparing with BPNN.</description><identifier>ISSN: 1309-1042</identifier><identifier>EISSN: 1309-1042</identifier><identifier>DOI: 10.5094/APR.2015.064</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>back–propagation neural network ; GM (1, 1) ; Grey system theory ; hourly particulate matter</subject><ispartof>Atmospheric pollution research, 2015-07, Vol.6 (4), p.572-580</ispartof><rights>2015 Turkish National Committee for Air Pollution Research and Control (TUNCAP)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-e30c9294c47f4823ea6a63b9e8145fbb8f271b43e5d3319682532dde59acfd073</citedby><cites>FETCH-LOGICAL-c386t-e30c9294c47f4823ea6a63b9e8145fbb8f271b43e5d3319682532dde59acfd073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Pai, Tzu-Yi</creatorcontrib><title>Comparisons of GM (1,1), and BPNN for predicting hourly particulate matter in Dali area of Taichung City, Taiwan</title><title>Atmospheric pollution research</title><description>This paper represents the first study to compare seven types of first–order and one–variable grey differential equation model [abbreviated as GM (1, 1)] and back-propagation artificial neural network (BPNN) for predicting hourly particulate matter (PM) including PMio and PM2.5 concentrations in Dali area of Taichung City, Taiwan. Their prediction performance was also compared. The results indicated that the minimum mean absolute percentage error (MAPE), mean squared error (MSE), and root mean squared error (RMSE) was 16.76%, 132.95, and 11.53, respectively for PM10 prediction. For PM2.5 prediction, the minimum MAPE, MSE, and RMSE value of 21.64%, 40.41, and 6.36, respectively could be achieved. All statistical values revealed that the predicting performance of GM (1, 1, x(0)), GM (1, 1, a), and GM (1, 1, b) outperformed other GM (1, 1) models. According to the results, it revealed that GM (1, 1) could predict the hourly PM variation precisely even comparing with BPNN.</description><subject>back–propagation neural network</subject><subject>GM (1, 1)</subject><subject>Grey system theory</subject><subject>hourly particulate matter</subject><issn>1309-1042</issn><issn>1309-1042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkU9LAzEQxRdRULQ3P0COFdqabP7s5qhVq6C1SD2HNDtrI9vNmmSVfntT6sGD4FxmBn7vwczLsnOCJxxLdnm1eJnkmPAJFuwgOyEUyzHBLD_8NR9ngxDecSoqeZHjk6ybuk2nvQ2uDcjVaPaEhmRELkZItxW6XsznqHYedR4qa6Jt39Da9b7ZoiSK1vSNjoA2OkbwyLboRjcWaQ9657XU1qz7JJnauB3t1i_dnmVHtW4CDH76afZ6d7uc3o8fn2cP06vHsaGliGOg2MhcMsOKmpU5BS20oCsJJWG8Xq3KOi_IilHgFaVEijLnNK8q4FKbusIFPc2Ge9_Ou48eQlQbGww0jW7B9UERSaTkQjD-P1oILhMnyoSO9qjxLgQPteq83Wi_VQSrXQwqxaB2MagUQ8LFHod06acFr4Kx0Jr0TA8mqsrZv4XfpGaJ4g</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Chen, Li</creator><creator>Pai, Tzu-Yi</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TV</scope><scope>C1K</scope><scope>KL.</scope><scope>7QH</scope><scope>7TN</scope><scope>7UA</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20150701</creationdate><title>Comparisons of GM (1,1), and BPNN for predicting hourly particulate matter in Dali area of Taichung City, Taiwan</title><author>Chen, Li ; Pai, Tzu-Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-e30c9294c47f4823ea6a63b9e8145fbb8f271b43e5d3319682532dde59acfd073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>back–propagation neural network</topic><topic>GM (1, 1)</topic><topic>Grey system theory</topic><topic>hourly particulate matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Pai, Tzu-Yi</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aqualine</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Atmospheric pollution research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Li</au><au>Pai, Tzu-Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparisons of GM (1,1), and BPNN for predicting hourly particulate matter in Dali area of Taichung City, Taiwan</atitle><jtitle>Atmospheric pollution research</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>6</volume><issue>4</issue><spage>572</spage><epage>580</epage><pages>572-580</pages><issn>1309-1042</issn><eissn>1309-1042</eissn><abstract>This paper represents the first study to compare seven types of first–order and one–variable grey differential equation model [abbreviated as GM (1, 1)] and back-propagation artificial neural network (BPNN) for predicting hourly particulate matter (PM) including PMio and PM2.5 concentrations in Dali area of Taichung City, Taiwan. Their prediction performance was also compared. The results indicated that the minimum mean absolute percentage error (MAPE), mean squared error (MSE), and root mean squared error (RMSE) was 16.76%, 132.95, and 11.53, respectively for PM10 prediction. For PM2.5 prediction, the minimum MAPE, MSE, and RMSE value of 21.64%, 40.41, and 6.36, respectively could be achieved. All statistical values revealed that the predicting performance of GM (1, 1, x(0)), GM (1, 1, a), and GM (1, 1, b) outperformed other GM (1, 1) models. According to the results, it revealed that GM (1, 1) could predict the hourly PM variation precisely even comparing with BPNN.</abstract><pub>Elsevier B.V</pub><doi>10.5094/APR.2015.064</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1309-1042
ispartof Atmospheric pollution research, 2015-07, Vol.6 (4), p.572-580
issn 1309-1042
1309-1042
language eng
recordid cdi_proquest_miscellaneous_1919956645
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects back–propagation neural network
GM (1, 1)
Grey system theory
hourly particulate matter
title Comparisons of GM (1,1), and BPNN for predicting hourly particulate matter in Dali area of Taichung City, Taiwan
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A38%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparisons%20of%20GM%20(1,1),%20and%20BPNN%20for%20predicting%20hourly%20particulate%20matter%20in%20Dali%20area%20of%20Taichung%20City,%20Taiwan&rft.jtitle=Atmospheric%20pollution%20research&rft.au=Chen,%20Li&rft.date=2015-07-01&rft.volume=6&rft.issue=4&rft.spage=572&rft.epage=580&rft.pages=572-580&rft.issn=1309-1042&rft.eissn=1309-1042&rft_id=info:doi/10.5094/APR.2015.064&rft_dat=%3Cproquest_cross%3E1765945368%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1765945368&rft_id=info:pmid/&rft_els_id=S1309104215301884&rfr_iscdi=true