Comparisons of GM (1,1), and BPNN for predicting hourly particulate matter in Dali area of Taichung City, Taiwan

This paper represents the first study to compare seven types of first–order and one–variable grey differential equation model [abbreviated as GM (1, 1)] and back-propagation artificial neural network (BPNN) for predicting hourly particulate matter (PM) including PMio and PM2.5 concentrations in Dali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric pollution research 2015-07, Vol.6 (4), p.572-580
Hauptverfasser: Chen, Li, Pai, Tzu-Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper represents the first study to compare seven types of first–order and one–variable grey differential equation model [abbreviated as GM (1, 1)] and back-propagation artificial neural network (BPNN) for predicting hourly particulate matter (PM) including PMio and PM2.5 concentrations in Dali area of Taichung City, Taiwan. Their prediction performance was also compared. The results indicated that the minimum mean absolute percentage error (MAPE), mean squared error (MSE), and root mean squared error (RMSE) was 16.76%, 132.95, and 11.53, respectively for PM10 prediction. For PM2.5 prediction, the minimum MAPE, MSE, and RMSE value of 21.64%, 40.41, and 6.36, respectively could be achieved. All statistical values revealed that the predicting performance of GM (1, 1, x(0)), GM (1, 1, a), and GM (1, 1, b) outperformed other GM (1, 1) models. According to the results, it revealed that GM (1, 1) could predict the hourly PM variation precisely even comparing with BPNN.
ISSN:1309-1042
1309-1042
DOI:10.5094/APR.2015.064