Quantifying the Structure and Composition of Flocculated Suspended Particulate Matter Using Focused Ion Beam Nanotomography
Suspended particulate matter (SPM) is present in the natural aquatic environment as loosely bound aggregates or “flocs” and is responsible for the transport and fate of sediment, carbon, nutrients, pollutants, pathogens and manufactured nanoparticles from catchment to coast. Accurate prediction of S...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2017-08, Vol.51 (16), p.8917-8925 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Suspended particulate matter (SPM) is present in the natural aquatic environment as loosely bound aggregates or “flocs” and is responsible for the transport and fate of sediment, carbon, nutrients, pollutants, pathogens and manufactured nanoparticles from catchment to coast. Accurate prediction of SPM hydrodynamics requires the quantification of 3D floc properties (size, shape, density and porosity) that span several spatial scales. Yet, current techniques (video camera systems, optical microscopy and transmission electron microscopy, TEM) can only provide 2D simplifications of size and shape with a spatial resolution gap between the “gross” (>100s μm) and nanoscale ( |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/acs.est.7b00770 |