Investigation on the removal of H2S from microwave pyrolysis of sewage sludge by an integrated two-stage system

In this study, an integrated two-stage system, including the in-situ catalytic microwave pyrolysis (ICMP) and subsequent catalytic wet oxidation (CWO) processes, was proposed to remove H 2 S released from microwave-induced pyrolysis of sewage sludge. The emission profile and H 2 S removal from the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2017-08, Vol.24 (24), p.19920-19926
Hauptverfasser: Zhang, Jun, Tian, Yu, Yin, Linlin, Zuo, Wei, Gong, Zhenlong, Zhang, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, an integrated two-stage system, including the in-situ catalytic microwave pyrolysis (ICMP) and subsequent catalytic wet oxidation (CWO) processes, was proposed to remove H 2 S released from microwave-induced pyrolysis of sewage sludge. The emission profile and H 2 S removal from the pyrolysis of raw sewage sludge (SS) and sewage sludge spiked with conditioner CaO (SS-CaO) were investigated. The results showed that CaO played a positive role on sulfur fixation during the pyrolysis process. It was found that SS-CaO (10 wt.%) contributed to about 35% of H 2 S removal at the first stage (ICMP process). Additionally, the CWO process was demonstrated to have promising potential for posttreatment of remaining H 2 S gas. At the Fe 3+ concentration of 30 g/L, the maximum H 2 S removal efficiency of 94.8% was obtained for a single Fe 3+ /Cu 2+ solution. Finally, at the pyrolysis temperature of 800 °C, 99.7% of H 2 S was eliminated by the integrated two-stage system meeting the discharge standard of China. Therefore, the integrated two-stage system of ICMP + CWO may provide a promising strategy to remove H 2 S dramatically for the biomass pyrolysis industry.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-017-9637-6