Hyaluronan/Collagen Hydrogels with Sulfated Hyaluronan for Improved Repair of Vascularized Tissue Tune the Binding of Proteins and Promote Endothelial Cell Growth

Innovative biomaterial‐based concepts are required to improve wound healing of damaged vascularized tissues especially in elderly multimorbid patients. To develop functional hydrogels as 3D cellular microenvironments and as carrier or scavenging systems, e.g., for mediator proteins or proinflammator...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular bioscience 2017-11, Vol.17 (11), p.n/a
Hauptverfasser: Rother, Sandra, Galiazzo, Vanessa D., Kilian, David, Fiebig, Karen M., Becher, Jana, Moeller, Stephanie, Hempel, Ute, Schnabelrauch, Matthias, Waltenberger, Johannes, Scharnweber, Dieter, Hintze, Vera
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Innovative biomaterial‐based concepts are required to improve wound healing of damaged vascularized tissues especially in elderly multimorbid patients. To develop functional hydrogels as 3D cellular microenvironments and as carrier or scavenging systems, e.g., for mediator proteins or proinflammatory factors, collagen fibrils are embedded into a network of photo‐crosslinked acrylated hyaluronan (HA), chondroitin sulfate (CS), or sulfated HA (sHA). After lyophilization, the gels show a porous structure and an improved stability against degradation via hyaluronidase. Gels with CS and sHA bind significantly more lysozyme than HA/collagen gels and retard its release. The proliferation and metabolic activity of endothelial cells are significantly increased on sHA gels compared to CS‐ or only HA‐containing hydrogels. These findings highlight the potential of HA/collagen hydrogels with sulfated glycosaminoglycans to tune the protein binding and release behavior and to directly modulate cellular response. This can be easily translated into biomimetic biomaterials with defined properties to stimulate wound healing. Hyaluronan/collagen hydrogels with acrylated sulfated glycosaminoglycans (sGAGs) are developed as bioinspired materials with properties, which are tunable toward patient‐specific needs. Gels containing sulfated hyaluronan significantly increase the proliferation and metabolic activity of endothelial cells. Functionalization of gels with sGAGs allows to adjust the binding and release of lysozyme highlighting their prospect to control interactions with proteins and the cellular response.
ISSN:1616-5187
1616-5195
DOI:10.1002/mabi.201700154